Quinhagak Street Reconstruction – E. Dowling Road to Askeland Drive MOA PM&E Project #21-13

Geotechnical Report

Appendix F

Geotechnical Report

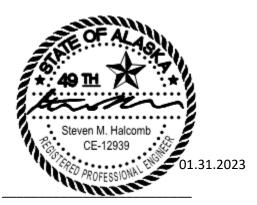
Quinhagak Street Reconstruction

MOA PM&E Project No. 21-13

January 2023

Contact Steven Halcomb, PE, GE, DGE shalcomb@crweng.com

3940 Arctic Blvd., Suite 300 Anchorage, AK 99503 p (907) 562.3252 | f (907) 561.2273


Geotechnical Report Quinhagak Street Reconstruction (MOA PM&E Project No. 21-13)

Submitted To:

Russ Oswald, PE, PLS – Project Manager Jennifer Noffke - Project Administrator Municipality of Anchorage Project Management & Engineering Department 4700 Elmore Road Anchorage, AK 99507

Submitted By:

CRW Engineering Group, Inc. 3940 Arctic Blvd., Suite 300 Anchorage, AK 99503 (907) 562-3252 www.crweng.com

Steven Halcomb, PE, GE, D.GE Senior Geotechnical Engineer

101

Ali Sacks, PE Geotechnical Engineer

January 2023 CRW Project Number 10155.00

Table of Contents

1.	Introduction, Project Description, and Existing conditions1
2.	Subsurface Investigation2
2.1	Subsurface Drilling
2.2	Sample Collection2
2.3	Borehole Completion and Piezometer Well Installation3
2.4	Groundwater Monitoring3
2.5	PID Field Testing3
3.	Laboratory Testing and Results
4.	Site Conditions
4.1	Geology5
4.2	Historical Geotechnical Investigations
4.3	Pavement Thickness and General Soil Lithology
4.4	Groundwater Conditions
4.5	PID Field Testing Results
4.6	Contaminated Site Review
5.	Geotechnical Engineering Recommendations
5.1	Site Preparation
5.2	Excavations7
5.3	Dewatering and Radius of Influence7
5.4	Frost Depth and Permafrost9
5.5	Recommended Road Structural Section9
5.	5.1 Recommended Structural Section – Limited Subgrade Frost Protection Method
5.6	Compaction Requirements10
5.7	Rigid Insulation10
5.8	Geotextiles
5.9	Subdrains11
5.10	Reuse of Material12
5.11	Utility Recommendations12
5.12	Light Pole Foundations12
6.	Limitations and Closure 14
7.	References

Tables

Table 3-1. Laboratory Analyses and Methods	4
Table 4-1. Summary of Groundwater Levels	6
Table 5-1. Recommended Structural Section (Insulated)1	0

Figures

- Figure 1 Vicinity Map
- Figure 2 Borehole Locations
- Figure 3 Typical Insulated Section with Edge Subdrains
- Figure 4 Typical Insulated Section with Center Subdrain

Appendices

- Appendix A Borehole Logs
- Appendix B Laboratory Results
- Appendix C Historical Borehole Logs
- Appendix D BERG2 Thermal Analysis Output

1. Introduction, Project Description, and Existing conditions

CRW Engineering Group, Inc. (CRW) is pleased to present this geotechnical investigation and design recommendations report to support the upgrades to Quinhagak Street in Anchorage, Alaska. A vicinity map is shown in Figure 1.

The project is being managed by the Municipality of Anchorage (MOA) Project Management & Engineering Department (PM&E) and has been assigned MOA PM&E project number 21-13. Improvements are expected to include a new roadway structural section, pavement, drainage improvements, curb and gutter, pedestrian facilities, and light poles.

The scope of geotechnical work included:

- Reviewing historical geotechnical investigations within and near the project area.
- Performing a geotechnical field investigation which included advancing boreholes along the project alignment and soil sampling.
- Installing piezometer wells for groundwater level monitoring.
- Overseeing index laboratory testing of recovered soil samples including moisture content, grain size distribution including hydrometer, and Atterberg Limits.
- Analyzing field observations and testing results.
- Preparing the geotechnical report to provide design recommendations for the project.

The project area is the length of Quinhagak Street in Anchorage, beginning south of E Dowling Road and extending to Askeland Drive (Figure 1). Properties along Quinhagak Street are primarily commercial or light industrial with a small residential subdivision south of E 64th Avenue.

The existing street is a two-lane roadway surface with curbs and gutters. There are currently no sidewalks along any length of the street. The street pavements show significant distresses including cracking, settling, heaving, and rolled curb and gutters.

2. Subsurface Investigation

CRW's geotechnical investigation consisted of drilling and sampling six boreholes (BH-01 through BH-06) on May 25, 2022, at the locations shown in Figure 2. Borehole locations were selected by CRW following the guidelines presented in the 2007 MOA PM&E Design Criteria Manual (DCM) Section 1.7 – Soil Investigation Standards and allowing traffic to pass through as much as possible during drilling operations. The soil boring locations were approved by PM&E prior to performing the field investigations.

Utility locates were submitted to the Alaska Digline and site walks were arranged with all entities known to have utilities in the project area. Several borehole locations were adjusted due to the presence of utilities.

2.1 Subsurface Drilling

Drilling services were provided by Discovery Drilling Inc. (Discovery) of Anchorage, Alaska, using a truckmounted CME-75 drill rig equipped with a nominal 8-inch outer diameter (O.D.) hollow-stem auger. When drilling through the asphalt pavement, an approximately 12-inch diameter hole was cut in the pavement with a saw tooth bit prior to advancing the borehole.

Traffic control was performed in accordance with the requirements of the MOA approved traffic control plan.

A CRW engineer supervised the field investigation program, recovered soil samples, and managed field operations. Borings were advanced to a depth of 17 feet below ground surface (BGS) except BH-01 which terminated at 16 feet BGS due to refusal of the sampler.

2.2 Sample Collection

Soil samples were obtained by advancing an oversized split-spoon sampler into the soil beyond the bottom of the auger or by collecting cuttings from the auger. Samples were collected using a 3-inch O.D. split-spoon sampler as a modified Standard Penetration Test (SPT). The sampler was advanced 24 inches, counted in 6-inch intervals, except where refusal was encountered in sampling and used a 340-pound automatic hammer. The number of blows required to drive the sampler each 6-inch interval is reported on the borehole logs in Appendix A. The blow counts shown on the borehole logs are field values that have not been corrected for overburden, sampler size, hammer energy, rod length, or other factors.

Split-spoon samples were collected at approximately 2.5-foot intervals in the first 10 feet and every 5 feet thereafter. Recovered samples were visually classified in the field before being individually sealed in two polyurethane bags and transported to the soil's laboratory for additional testing. Field visual classifications were verified through laboratory testing. Soil characteristics, such as classification, consistency, moisture, and color were noted for each sample recovered. Classification was performed following the Unified Soil Classification System (USCS) according to ASTM D2487/D2488. Frost classifications of the soil were described according to the MOA DCM standards.

2.3 Borehole Completion and Piezometer Well Installation

All boreholes were backfilled with cuttings brought to the ground surface during drilling. In select borings (BH-01, BH-03, and BH-05), a 1-inch PVC piezometer well was installed for groundwater level monitoring. The PVC pipe was hand-slotted over various portions and was installed over the length of each boring.

After the piezometer was installed, the annular space around the PVC was backfilled with cuttings. A 7inch flush mount cover was installed at the surface with the annulus filled with pea gravel. A cold patch asphalt was placed around the flush mount to match the existing pavement surface where required. If no piezometer well was installed, the boring was backfilled with cuttings and cold patch asphalt was placed at the surface to match the existing pavement where required.

2.4 Groundwater Monitoring

Groundwater levels were noted during drilling, and two weeks after completion of drilling. Groundwater levels are presented on the borehole logs, in Appendix A, and in this report in Table 4-1.

2.5 PID Field Testing

Soil samples were tested with a photo ionization detector (PID) to test for the presence of volatile organic compounds (VOC) after being placed into polyurethane bags during sampling. The PID was calibrated at the beginning of each field day with 100 parts per million (ppm) isobutylene calibration gas. The PID used was equipped with a 10.2-eV lamp. Screening was performed between 15 and 60 minutes after the sample was placed in the bag. Prior to screening, each sample was shaken or agitated for 15 seconds to assist volatilization. After vapor development, the PID sampling probe was inserted into the top of the bag and the highest measurement was recorded. Care was taken when inserting the sampling probe into the bag to avoid uptake of any moisture or soil particles. The field PID readings are presented on the borehole logs in Appendix A.

3. Laboratory Testing and Results

Soil laboratory tests to evaluate index properties of recovered samples were performed by Alaska Testlab (ATL) in their Anchorage facility. The laboratory testing programs consisted of soil index tests to determine water content, grain-size distribution including hydrometer, No. 200 Wash, Atterberg Limits, and Limited Mechanical Analysis (LMA) to determine percentages of gravel, sand, and fines content. LMA consists of washing a sample over the Number 200 mesh sieve. The coarse fraction of the remaining soil is then dried and sieved through the Number 4 sieve to determine the sand and gravel content. The LMA is a means to determine the percentage of coarse and fine soil in a sample without having to perform full gradations. Because LMAs are not full gradations, all classifications of clean granular soils are "poorly graded" even though the soil may, in fact, be well graded. Qualitative observations of grain sizes are included in the soil descriptions on the logs in Appendix A.

The laboratory tests were performed in accordance with the test methods of ASTM International as summarized in Table 3-1.

Analysis	Method	Number of Samples
Water Content	ASTM D2216	48
Grain-size Distribution	ASTM D6913	6
	ASTM D422	
Limited Mechanical Analysis	ASTM D1140	15
Atterberg Limits	ASTM D4318	3

Table 3-1. Laboratory Analyses and Methods

Results of the laboratory testing are presented on borehole logs in Appendix A and in full in Appendix B.

4. Site Conditions

4.1 Geology

The geology for the project area was determined from the Simplified Geologic Map of Central and East Anchorage, Alaska, as mapped by R.A. Combellick with the Alaska Division of Geologic and Geophysical Surveys (DGGS) in 1999, in addition to the 1972 map by Schmoll and Dobrovolny (Combellick, 1999; Schmoll and Dobrovolny, 1972). The geology of the project area consists primarily of 50 feet or more of glacioestuarine or eolian silt and fine sand, with Holocene alluvium to the south, underlain by undifferentiated glacial drift.

Geologic conditions in the boreholes agreed with the general geology though variations between borings was noted.

4.2 Historical Geotechnical Investigations

CRW consulted the online MOA Soil Boring App to evaluate historical borings in the project area. Fourteen historic boreholes were located in the project limits. Historical boreholes generally matched information obtained in our field investigation. This included a 2 to 5-foot layer of granular fill, followed by a section of silty sand and clayey silt. Historical borehole logs can be found in Appendix C.

4.3 Pavement Thickness and General Soil Lithology

The pavement thickness, where encountered, ranged from 1.5 to 3.0 inches based on measurements of recovered samples.

The subsurface conditions observed within the existing road prism generally consisted of 5 to 6 feet of granular fill composed of poorly graded gravel with sand and silt or poorly graded sand with gravel and silt, decreasing in thickness from north to south. At BH-06, granular fill was 2.5 feet thick. The granular fill was underlain by up to 4 feet of silty sand or sand with silt, decreasing in thickness from north to south, and was not observed in BH-06.

Beneath the granular fill layer, 6 to 10 feet of silty lean clay was observed increasing in thickness from north to south. Beneath the silty lean clay, 3 to 5 feet of silty sand was generally present increasing in thickness from north to south. Cobbles were noted in the granular fill ranging from 4 to 5 inches in size and were present from 5 to 10 percent by volume.

The moisture content ranged between 4 to 8 percent in the granular fill, 18 to 20 percent in the of silty sand/ sand with silt, 10 to 40 percent in the silty lean clay, and 20 to 25 percent in the silty sand.

The fines content ranged between 2 and 10 percent in the granular fill, and its frost susceptibility was estimated to be non-frost susceptible (NFS) to frost class F-2. The silty sand/sand with silt had fines content from 20 to 50 percent and the silty lean clay had fines content of 90 to 100 percent and were estimated to be frost class F-4.

A layer of peat was encountered in BH-03 from approximately 1.0 to 2.5 feet BGS. The moisture content was 164 percent. BH-03 was located just off the road surface in the gravel lot to the west of the roadway (Figure 2). Peat was not encountered in any other borings.

Fat clay was encountered in BH-05 from 5 to 15 feet BGS, with a moisture content of 30 to 40 percent, an estimated fines content of 100 percent, and Atterberg limits with a liquid limit of 54 percent, plastic limit of 25, and plasticity index of 29 percent. Fat clay was not encountered in any other borings.

The observed subsurface conditions generally agreed with the historic geotechnical investigation findings. Detailed subsurface conditions are presented on the borehole logs in Appendix A. It should be noted that subsurface conditions outside the existing road prism could vary from the borehole logs.

4.4 Groundwater Conditions

Groundwater, if observed, was recorded on the borehole logs. Only the most recent measurement taken after drilling is displayed on the borehole logs in Appendix A. Table 4-1 provides a summary of the groundwater levels at the time of drilling and all subsequent measurements. All depths are relative to the existing roadway surface. Screen intervals consist of the depth of the piezometer that was slotted prior to installation.

Borehole	Screened Interval if Completed as Piezometer (Feet BGS)	Groundwater Levels At Time of Drilling on 5/25/2022 (Feet BGS)	Groundwater Levels on 6/9/2022 (Feet BGS)	Groundwater Levels on 8/17/2022 (Feet BGS)
BH-01	4.0 - 16.0	5.0	5.55	4.35
BH-02	No Piezometer Installed	3.5	N/A	N/A
BH-03	2.75 – 16.75	3.0	3.65	2.33
BH-04	No Piezometer Installed	Not Observed	N/A	N/A
BH-05	9.6 - 14.6	1.0	3.05	1.98
BH-06	No Piezometer Installed	10.0	N/A	N/A

 Table 4-1. Summary of Groundwater Levels

4.5 PID Field Testing Results

Standard practice in the MOA is to consider soil samples with PID readings of 20 parts per million (ppm) or higher potentially contaminated. No samples screened during this investigation exceeded this limit, and no visual or olfactory evidence of contamination was observed.

4.6 Contaminated Site Review

Soil samples were tested using a PID during the field investigation per MOA requirements with results previously discussed in this report and values provided on the borehole logs. In addition, CRW consulted the Alaska Department of Environmental Conservation (ADEC) Contaminated Sites Program (CSP) on-line database for nearby recorded contaminated sites. A review of the CSP database revealed no sites within 500 feet of the project area.

5. Geotechnical Engineering Recommendations

CRW has developed the following recommendations based on our understanding of the project scope and considering the data obtained during our geotechnical investigation.

5.1 Site Preparation

All existing pavements, fill, curbs and gutters, trees, stumps, and other deleterious material should be cleared from the roadway reconstruction limits. Exposed subgrade at the bottoms of excavations should be scarified a minimum of 6 inches, moisture conditioned, and compacted to 95 percent of the maximum Proctor density as determined from ASTM D1557. If the subgrade cannot be moisture conditioned, we recommend the contractor over excavate the subgrade a minimum of 1 foot and replace with non-frost susceptible (NFS) material.

5.2 Excavations

All excavations should follow proper local, state, and federal requirements including those in 29 Code of Federal Regulations (CFR) Part 1926 Occupational Safety and Health Standards Subpart P – Excavations (Occupational Safety and Health Administration [OSHA], 2020).

The contractor is responsible for trench stability, worker safety, and regulatory compliance as he will be present on a daily basis and can adjust efforts to obtain the needed stability. Surface runoff entering the excavation could present challenges and should be accounted for during construction. We anticipate excavations will use benching/sloping or shoring/shielding as OSHA requires this due to the depth of the excavation. If trench shoring, like cantilever or braced excavations, is utilized, additional recommendations for lateral earth pressures can be provided.

Utility or roadway excavations above the water table may stand relatively steeply initially but fail suddenly without warning. As the in-situ soils dry, they will tend to ravel and slough to their natural angle of repose, which we estimate to be between 1.5 to 1.8H:1V (horizontal to vertical). Below the water table, or if surface water is allowed to enter the trench, in-situ soils may slough, soften, squeeze, slump over time or due to disturbance, to slopes of 2 to 2.5H:1V or flatter if not benched/sloped or shored/shielded.

Additionally, the sequencing of excavation for the utility line and the excavation for the roadway should be considered by the designers and the contractor. Should the roadway construction occur prior to utility installation, poor performance of the roadway may occur due to dissimilar material in the utility trench compared to the roadway structural section as well as damage and repair to any insulation and/or geotextile.

5.3 Dewatering and Radius of Influence

Based on our observations during drilling and measurements of groundwater in piezometers after drilling, shallow groundwater is present in the project area. Excavations are anticipated to be 5 to 8 feet BGS and groundwater levels were measured between 1.0 to 5.6 feet BGS. Groundwater is likely to be encountered during excavation activities. Groundwater conditions will vary with environmental variations and seasonal

conditions, such as the frequency and magnitude of rainfall patterns, as well as man-made influences, such as existing curbs, gutters, and other roadside features.

We recommend that the contractor determine the actual groundwater levels at the time of construction to evaluate groundwater impacts on the construction procedures, if necessary. We recommend the ground around any excavation be contoured to direct surface water away from the excavation and to minimize surface water or runoff from entering the excavation.

Based on the observed groundwater and anticipated excavation depths, dewatering will likely be required. Dewatering methods include open pumping, wellpoints, deep wells, ejector wells, cutoff methods, or some combination. Considering the lithology encountered and anticipated depths, we do not recommend open pumping, ejector wells, or cutoff methods due to the anticipated groundwater drainage potential based on estimated hydraulic conductivity (discussed later, also see Powers et al., 2007 and Powrie, 2014). We recommend wellpoints be considered for construction dewatering. Depending on spacing and size, wellpoints may be either 1.5- or 2-inch diameter.

We recommend construction dewatering be the responsibility of the contractor including submitting a dewatering plan for approval as part of the submittal process. The dewatering plan should show anticipated wellpoint/well layout including spacing, diameters, well screens, filters, location of pumps, and discharge point(s).

Permits from the Alaska Department of Natural Resources and potentially other local and state agencies will be necessary for construction dewatering.

For preliminary planning, we have estimated pumping rates for the storm drain excavation based on an assumed dewatering effective trench width of 6 feet and drawdown of up to 5 feet. We estimate the hydraulic conductivity from empirical and literature values, based on the encountered soils, ranging from 0.02 to 10 feet per day (FT/day) with higher flows in the silty sands and lower flows in the silt with sand. We note there is tremendous uncertainty in conductivity estimates using empirical/literature values as they are affected by soil type, excavation/dewatering methods, and seasonal groundwater fluctuations and will vary during construction.

We estimate an initial required pumping rate of 0.1 to 3 gallons per minute per linear foot (GPM/FT) which decreases to steady-state pumping rates of 0.1 to 2 GPM/FT during dewatering efforts. We estimate the radius of influence of the cone of depression from dewatering to vary from 3 to 60 FT (measured from the center of the trench). These estimates do not consider the effect of "tailwater" from water flowing into the excavation due to the high permeability of bedding material.

Dewatering activities should consider the potential for settlement if buildings and other infrastructure are within the radius of influence. When the water table is lowered, compressible soils can consolidate, due to an increase of the effective weight of overlying soils. Consolidation has the potential to impact development adjacent to the project area. While construction and dewatering are anticipated to be of short duration and impacts minimal, considerations should be made as to whether monitoring of settlement is required. CRW's geotechnical engineer will work closely with the designers to evaluate the magnitude of settlement and tolerable settlement values will be determined considering input from MOA, CRW designers, and stakeholders during detailed design.

If dewatering is anticipated to produce unacceptable settlements, the designers should perform pre- and post-condition surveys of nearby building finish floors/foundations and other infrastructure to evaluate if dewatering activities resulted in damage. In addition, survey points should be placed at and around buildings and other infrastructure to verify settlement due to dewatering. If settlement is observed during monitoring the contractor should reevaluate the dewatering technique to reduce the potential for continued settlement.

5.4 Frost Depth and Permafrost

Typical design frost depths are estimated between 8 and 11 feet BGS in Anchorage and are common for relatively dry granular soils. It should be noted that seasonal fluctuations of snow cover, temperatures, infiltration/evaporation, groundwater table, and other climatic effects will have an impact on the design frost depth therefore any calculated value should only be considered a reasonable estimate of the design value as deeper frost penetrations are possible. In addition, the presence of groundwater within the upper 11 feet will also affect the frost depth in addition to the potential for ice lensing and heaving.

We have modeled design frost depths based on the modified Berggren equation using the commercially available Microsoft DOS program BERG2 as discussed in the next section of this report.

Permafrost was not encountered in the boreholes and is not expected at the project site.

5.5 Recommended Road Structural Section

CRW has developed a recommended road structural section based on the current MOA DCM as outlined in Chapter 1 Streets, Section 1.10 Road Structural Fill Design. The DCM recommends two methods for frost considerations in the structural section design: the Complete Protection Method and the Limited Subgrade Frost Penetration Method.

The structural section design uses the latter method, which seeks to reduce the freezing impacts to a specified percentage of the structural section into the subgrade.

The Complete Protection Method involves the removal of all frost susceptible subgrade soils beneath the roadway to the calculated frost penetration depth. These soils are replaced with non-frost susceptible fill. This method may be used regardless of the frost susceptibility of the subgrade soils. Rigid board insulation may also be used in the subbase of the structural section to reduce the required depth of classified fill and backfill. The Complete Protection Method would require excavation and replacement of frost susceptible soils down to depths of 8 to 10 feet, excluding insulation, which is not economical and therefore is not recommended.

The Limited Subgrade Frost Penetration Method attempts to restrict roadway surface movements to levels that will not adversely affect road surface life or quality. The method permits frost penetration into a frost susceptible subgrade equal to a maximum of 10 percent of the structural section design thickness.

The frost depth was analyzed using the commercially available Microsoft DOS computer program BERG2 written by Braley and Connor (Braley and Connor, 1989) as approved in the DCM. The analysis calculates the estimated total frost penetration depth for a given soil lithology. For our analysis, we used the program default climate parameters for Anchorage and assumed conservative surface freeze/thaw n-factors based

on local practice and published values. Soil layers were assigned in the program with estimated dry unit weights of the soil and average or anticipated water contents. Soil thermal parameters were calculated from the equations built into the BERG2 program (see Braley and Connor for further discussion).

5.5.1 Recommended Structural Section – Limited Subgrade Frost Protection Method

The project area contains frost susceptible subgrade with a F-3 and F-4 frost classification within 8 feet of the ground surface. Based on this, we recommend an insulated structural section using the Limited Subgrade Frost Penetration for the entire project alignment. We have developed a recommended structural section based on the BERG2 analysis and have evaluated 2 inches of insulation. The insulation for the structural section in this analysis assumed a minimum R-value of R-4.5 per inch. Our recommended structural sections are presented in Table 5-1. A typical insulated section is presented in Figure 3.

Minimum Thickness (inches)	Layer	Material	Compaction (percent)
2	Wearing Course	Asphalt Pavement (Class E)	-
2	Leveling Course	MOA Leveling Course	95
16	Base Course	MOA Type II-A	95
2	Insulation	XPS or EPS (60 psi R-4.5)	-
24	Subbase Course	MOA Type II	95
N/A	Separation Geotextile	MOA Class 2, Type A	-
N/A	Subgrade	Existing soils	95 (top 6 inches)
46	Total Thickness	-	-

 Table 5-1. Recommended Structural Section (Insulated)

See Appendix D for BERG2 analysis and detailed results. Note that the recommended structural section considers only minimum thicknesses.

5.6 Compaction Requirements

Pavement structural section fill material should be placed in loose lift thickness, no more than 12 inches, and compacted to the percentage as outlined in Table 5-1 based on the material's Modified Proctor maximum dry density in accordance with ASTM D1557. Compaction verification of the backfill by a qualified inspector is also recommended.

5.7 Rigid Insulation

We recommend that rigid board insulation for the road structural section have a minimum compressive strength of 60 pounds per square inch (psi) and a maximum water absorption of 0.3 percent by volume in accordance with the current version of Municipality of Anchorage Standard Specifications (MASS). We recommend the insulation have a minimum R-value of R-4.5 per inch. We recommend a minimum of 12 inches of loose fill be placed over the insulation to protect from wheel loads during construction. We also

recommend a minimum of 18 inches of fill over the insulation for design to prevent frost formation in the form of differential icing.

Board insulation should be extended a minimum of 4 feet beyond the back of curbs when no sidewalk is present. Extending the insulation 4 feet will reduce the risk of the curb heaving up or "curb rolling." The potential for curb rolling decreases as the distance the insulation extends beyond the back of curb increases. The 4-foot layout has protected the curb well on past projects especially where the curbs need to be protected due to the flat longitudinal roadway grades like those on this project.

The insulation should extend 1 foot minimum beyond the back of any sidewalk but will not perform as well as the curb. To increase the performance of any sidewalk, the owner could consider extending the insulation 4 feet as well. Additionally, insulation below separated sidewalks that are separated by 4 feet or more could be reduced in thickness to save cost but will not perform as well.

Transitions between insulated and uninsulated sections should involve the extension of insulation beyond the roadway section 8 to 12 feet with the thickness reduced in these areas to minimize the possibility of differential heave. The insulation can be tapered from 2 inches thick to 1 inch thick in the transition zone. The subgrade in transitions should be graded (tapered) at a 10H:1V (horizontal to vertical) slope if construction distances permit. We recommend the transitions not be steeper than 5H:1V.

5.8 Geotextiles

We recommend that a geotextile be used at the base of the structural section along the entire project alignment. The use of a geotextile reduces the effects of thaw weakening, prevents fines migration, and increases lateral drainage at the base of the structural section. If soil layers at the base of the excavation are loose or soft, the geotextile will provide additional stabilization.

We recommend using a non-woven geotextile meeting MASS similar to Class 2, Type A. The geotextile should be placed on top of the excavated subgrade soils prior to placement of classified fill. The geotextile should be extended up the sides of excavations.

Typical installation involves placing the geotextile transverse to the centerline in order to avoid large overlaps. Fabric joints should be overlapped according to manufactures recommendations. Fabric joints may require sewing depending on subgrade conditions and should follow the manufacturer's requirements.

5.9 Subdrains

Incorporation of subdrains into the design of the structural section is recommended to help mitigate against the effects of high ground water levels. High groundwater levels, or groundwater that reaches the pavement structural section, can collect in the structural section and impact the overall road performance. Subdrains will mitigate against water infiltration in the structural section and improve overall road performance. The depth of subdrain installation should be below the roadway structural section for optimal performance.

Edge drains should be placed at the outer edges of the structural section as shown in Figure 3 and consist of a geotextile wrapped perforated pipe with a minimum O.D. of 10 inches. Construction should be per

MASS. Roadway subgrade should be sloped with a minimum of 2 percent towards subdrains to assist with drainage. Termination of the subdrains should be to the drainage system manholes or suitable outfalls. Subdrains should be hydraulically sized and consider potential icing issues.

Should edge drains not be feasible, an alternate would be a perforated drain placed in a shallow trench near the center of the structural section. As such, an alternate drainage option is a perforated center subdrain as shown in Figure 4 consisting of a geotextile-wrapped perforated pipe with a minimum O.D. of 18 inches. The use of a center subdrain may result in poorer structural section performance over time compared to the used of edge drains. The center subdrain should be constructed per MASS. Roadway subgrade should be sloped with a minimum of 2 percent towards the subdrain to assist with drainage. Termination of the subdrain should be to the drainage system manholes or suitable outfalls. Subdrains should be hydraulic sized and consider potential icing issues.

5.10 Reuse of Material

Existing fill and native material that meets the classification for MOA Type II and Type II-A fill can be reused as classified fill in the roadway structural section. It is anticipated that the majority of existing fill and native material along the project alignment contain frost susceptible material and will not meet MOA Type II and Type II-A classification.

Existing fill and native material that meets the classification for bedding material can be reused around utility pipes. Existing fill and native materials can be reused in utility trenches as backfill over the bedding but below the pavement structural section.

The amount and quality of reuse of material will vary depending on factors including lateral extent of deposits, transitional lithology, degree of saturation and moisture control during construction, and mixing of excavated materials. Higher fines content soils were encountered near the ground surface which could make granular soils difficult to compact if mixed and water content increases. We recommend native material excavated for reuse be visually inspected for fines content and if the material becomes wet will require storage to be dried for reuse. This effort may be less efficient and cost more than complete removal and replacement with imported materials.

5.11 Utility Recommendations

All utilities should be bedded, backfilled, and compacted per MASS. The satisfactory performance of piped utilities is highly dependent upon the quality of soil below and along the sides of the pipe.

MOA standard is to adequately bury water, sanitary sewer, and storm sewer utilities to protect from freezing. If inadequate burial depths cannot be achieved as design proceeds, alternate methods such as insulation, active freeze protection like heat trace, or some combination is recommended. Recommendations on insulation for utility protection can be provided on request.

5.12 Light Pole Foundations

We understand streetlights are planned along the project corridor and anticipate the design to follow MASS. We anticipate driven steel piles for the light pole foundations.

We recommended driven piles be installed such that the minimum embedment is achieved without damage to the piles. We recommend the light pole foundations be installed to a minimum of 25 feet BGS due to the presence of fine-grained soils starting around 10 feet BGS.

Additional recommendations for lateral or axial pile foundation considerations can be provided as needed.

6. Limitations and Closure

The information submitted in this report is based on our interpretation of data from a field geotechnical investigation performed for this project. The conclusions contained in this report are based on site conditions as they were observed on the drilling dates indicated. It is presumed that the borings in this investigation are representative of the subsurface conditions throughout the site. Effort was made to obtain information representative of existing conditions at the site. If, however, subsurface conditions are found to differ, we should be notified immediately to review these recommendations in light of additional information.

If there is substantial lapse of time between the submittal of this report and the start of work at the site, or if conditions have changed due to natural causes or construction operations at or adjacent to the site, we recommend that this report be reviewed to determine the applicability of the conclusions considering the changed conditions and time lapse. Unanticipated soil conditions are commonly encountered and cannot fully be determined by collecting discrete samples or advancing borings. The client and contractor should be aware of this risk and account for contingency accordingly.

Samples will be retained by CRW for six months following the date on which the final report is issued. Other arrangements may be made at the client's request.

This report was prepared by CRW for use on this project only and may not be used in any manner that would constitute a detriment to CRW. CRW is not responsible for conclusions, opinions, or recommendations made by others based on data presented in this report.

7. References

Alaska Department of Environmental Conservation (ADEC) Contaminated Sites Program (CSP) on-line database. Retrieved May 2022.

https://adec.maps.arcgis.com/apps/mapviewer/index.html?webmap=315240bfbaf84aa0b8272ad1cef3c ad3

Braley, W.A. and Connor, B., 1989. *Berg2: Micro-Computer Estimation of Freeze and Thaw Depths and Thaw Consolidation*. A report prepared for the State of Alaska Department of Transportation and Public Facilities Statewide Research, June, 1989.

Combellick, R.A., 1999. Simplified geologic map and cross sections of central and east Anchorage, Alaska: Alaska Division of Geological and Geophysical Surveys Preliminary Interpretive Report 1999-1.

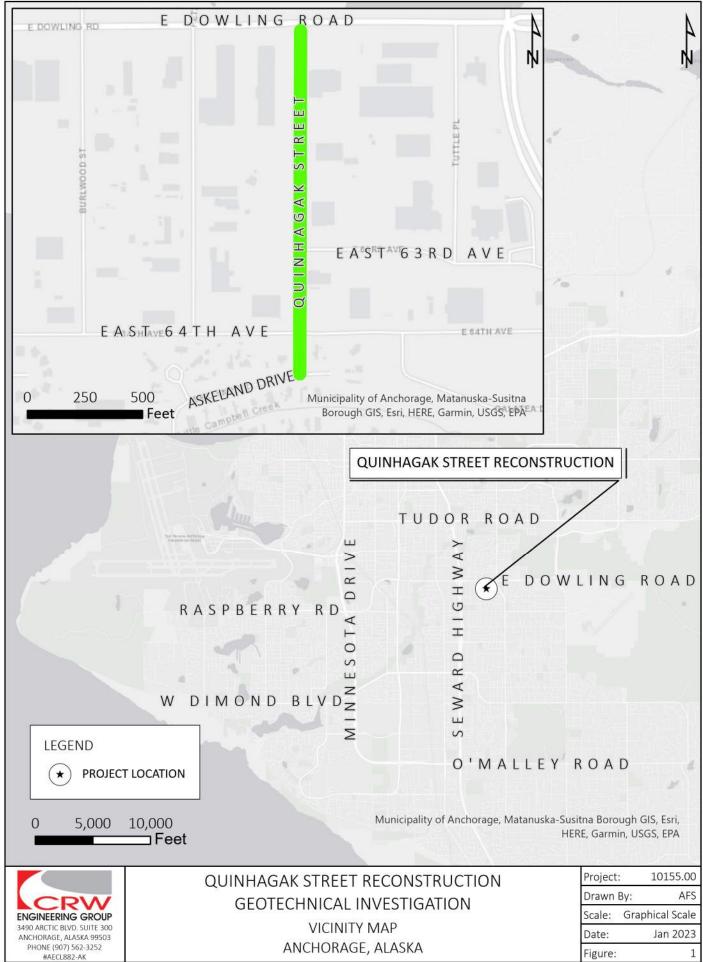
Municipality of Anchorage, 2022. Online Soil Boring Application. Retrieved July 2022. <u>https://muniorg.maps.arcgis.com/apps/webappviewer/index.html?id=ff7c8f704663452096705a716c14</u> <u>b1f3</u>

Municipality of Anchorage Project Management and Engineering. 2007. Municipality of Anchorage Design Criteria Manual. January.

https://www.muni.org/Departments/project_management/Pages/designcriteriamanual.aspx

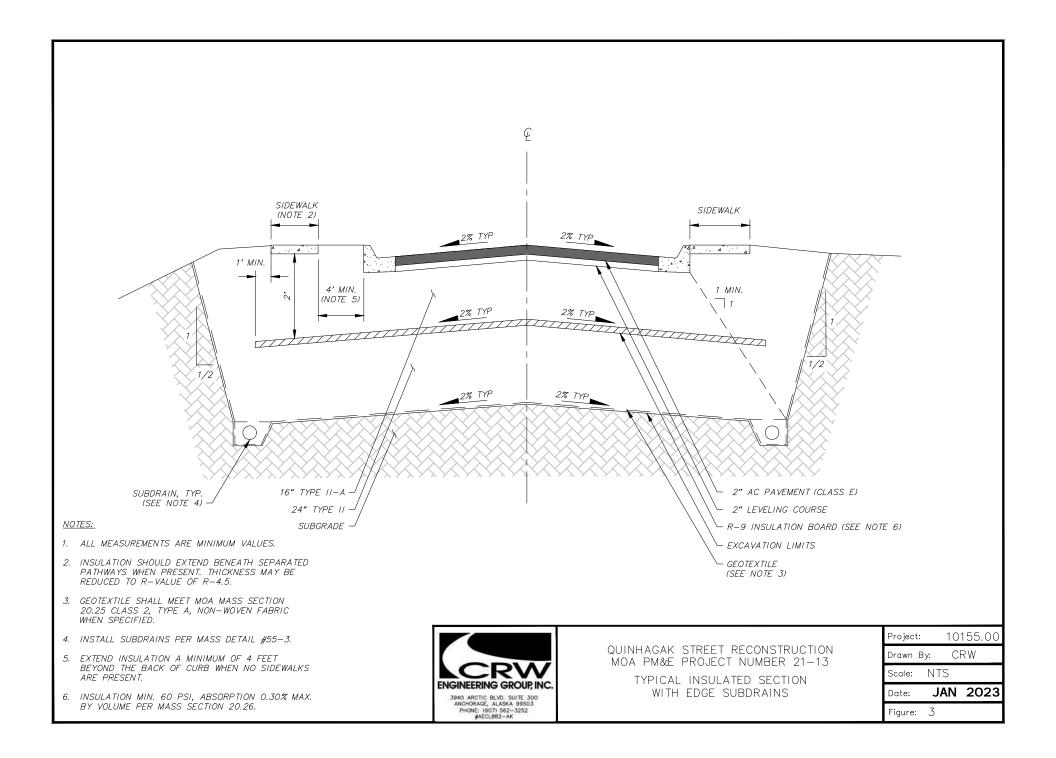
Municipality of Anchorage Project Management and Engineering. 2015. Municipality of Anchorage Standard Specifications.

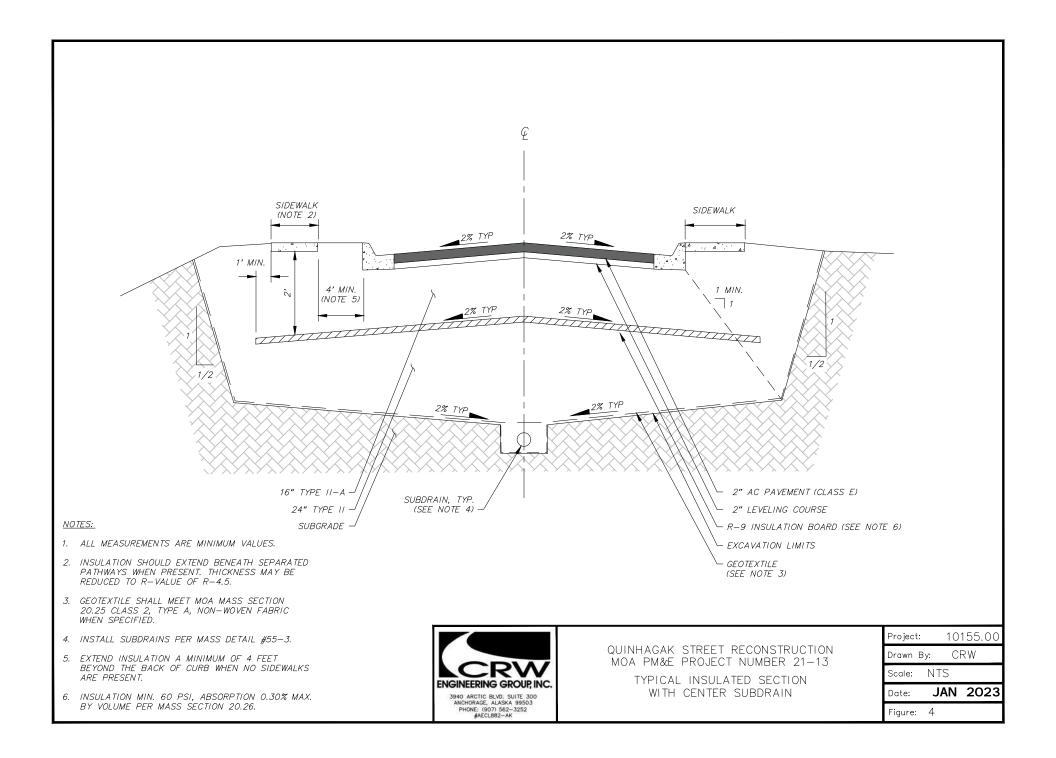
Occupational Safety and Health Administration, 2020. 29 CFR Part 1926 Subpart P - Excavations, Occupational Safety and Health Standards. United Stated Department of Labor. Updated February 2020.


Powers, P.J., Corwin, A.B., Schmall, P.C., and Kaeck, W.E., 2007. *Construction Dewatering and Groundwater Control*, 3rd Edition. John Wiley & Sons, Inc., Hoboken, NJ.

Powrie, W., 2014. *Soil Mechanics Concepts and Applications*, 3rd Edition. Taylor and Francis Group, LLC, Boca Raton, FL.

Schmoll, H.R. and Dobrovolny, E., 1972. *Generalized Geologic Map of Anchorage and Vicinity, Greater Anchorage Area Borough, Alaska*. US. Geological Survey Open File Report: Technical Data Unit Classification number 513.



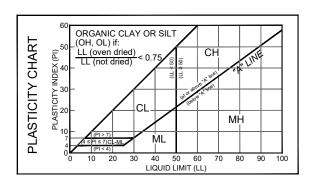

Figures

File Path: J: NobsData\10155.00 Quinhagak Street Reconstruction/00 CADD 2019/04 GIS/00 Project Database/Quinhagak_Geotech_Figures.aprx

Appendix A

Borehole Logs

Included in this section:


- 1) Borehole Log Legend
- 2) Borehole Logs (BH-01 through BH-06)

UNIFIED	SOIL CLASSIFICATION		/I D 2487)
GROUP SYMBOL	SOIL GROUP NAMES &	LEGEN	ND
GW	WELL-GRADED GRAVEL	妨	nd dd
GP	POORLY GRADED GRAVEL		soil contains 5% sand, a with sand"
GM	SILTY GRAVEL		if soil contains ≥ 15% sand, add "with sand"
GC	CLAYEY GRAVEL		·- ^i
SW	WELL-GRADED SAND		pp
SP	POORLY GRADED SAND		soil contains 5% gravel, a with gravel"
SM	SILTY SAND		if soil contains ≥ 15% gravel, add "with gravel"
SC	CLAYEY SAND		
CL	LEAN CLAY		soil d" or e is ndy"
ML	SILT		ained : ith san /er type add "sa
OL	ORGANIC CLAY OR SILT		arse-gi add "w hichev 30%, å ivelly"
СН	FAT CLAY		ains coarse- 2 29%, add ' el" for which or for ≥ 30% or "gravelly
MH	ELASTIC SILT		if soil contains coarse-grained soil from 15% to 25%, acareard or "with gravel" for which wert type is with gravel" for which wert type is prominent, or for ≥ 30%, add "sandy" or "gravelly"
OH	ORGANIC CLAY OR SILT		if s from wi prom
PT	PEAT	<u>\\/</u>	

Gravels or sands with 5% to 12 % fines require dual symbols (GW-GM, GW-GC, GP-GM, GP-GC, SW-SM, SW-SC, SP-SM, SP-SC) and add "with clay or "with silt" to group name. If fines classify as CL-ML for GM or SM, use dual symbol GC-GM or SC-SM.

Optional Abbreviations: Lower case "s" after USCS group symbol denotes either "sandy or "with sand" and "g" denotes either "gravelly" or "with gravel."

OTHER SYMBOLS

COMPONENT DEFINITIONS BY GRADATION

COMPONENT	SIZE RANGE
BOULDERS	ABOVE 12 IN.
COBBLES	3 IN. TO 12 IN.
GRAVEL	3 IN. TO NO. 4 (4.76 mm)
COARSE GRAVEL	3 IN. TO 3/4 IN.
FINE GRAVEL	3/4 IN. TO NO. 4 (4.76 mm)
SAND	NO. 4 (4.76 mm) TO NO. 200 (0.074 mm)
COARSE SAND	NO. 4 (4.76 mm) TO NO. 10 (2.0 mm)
MEDIUM SAND	NO 10 (2.0 mm) TO NO. 40 (0.42 mm)
FINE SAND	NO. 40 (0.42 mm) TO NO. 200 (0.074 mm)
SILT AND CLAY	SMALLER THAN NO. 200 (0.074 mm)
SILT	0.074 mm TO 0.005 mm
CLAY	LESS THAN 0.005 mm

RELATIVE DENSITY / CONSISTENCY ESTIMATE USING STANDARD PENETRATION TEST (SPT) VALUES (FROM TERZAGHI & PECK 1996)

	SYMBOL		NAMES & LEGE	IN	D		C	OHESION	LESS	SOILS	a)		COHES	SIVE SOILS		
	BLDR	COBBLES	SAND BOULDERS		X	overlay	RELA DEN	TIVE SITY	(BLC	N ₆₀ WS/FO	OT) ^(c)	CONSISTENCY		I ₆₀ 5∕FOOT) ^(c)	UNCONFIN COMPRESS STRENGTH (1	IVE
	FILL	GRANUL	AR FILL			ъ	VERY	LOOSE		0 - 4		VERY SOFT	0	- 2	0 - 0.25	
5	WD	WOODY	DEBRIS		$\langle \langle \rangle$	man-made o placed	LOOSI	Ξ	4 - 10 S		SOFT	2 - 4		0.25 - 0.5	0	
_	RAP		IED ASPHALT			p p	MED D	ENSE		10 - 30		MEDIUM	4	- 8	0.50 - 1.0)
2		PAVEME	NT				DENS	Ē		30 - 50		STIFF	8 -	· 15	1.0 - 2.0	
2	CDI			~			VERY	DENSE	(OVER 5	-	VERY STIFF		- 30	2.0 - 4.0	
			OR DESCRIBIN E CONDITION	G		(;	a) Soils co	nsisting of grav	vel san	d and silt_e		HARD arately or in combination pos		ER 30	OVER 4.0	
			VI D 2488)				behavio	r				nd exhibiting undrained beha	-		plasticity, and exhibitin	gulaneu
		ABSEN	, CE OF MOISTUR	Е,	٦	(e) Refer to	ASTM D 1586	-99 for	a definition	of N.	pression strength, U _c . Note t		measures s. an	d Pocket Penetrometer	measures
2	DRY		, DRY TO THE			(U _c .	ou onour ou ong	gun, ou					modouroo oli un		modouroo
5		TOUCH					SS	SPT Sam	npler			LER ABBREVIAT lb hammer)		Core (Ro	ock)	
5	MOIST	BUT NO VISIBLE				SSO Oversize Spit Spoon (2.5 in. OD, 140 lb ty						TW	``	/ Il (Shelby Tube)		
		WATER	E FREE WATER,				HD Heavy Duty Split Spoon (3 in. OD, 300/3					n. OD, 300/340 lb typ	.) MS	Modified	Shelby	
ŭ	WET		LY SOIL IS BELO	N			BD Bulk Drive (4 in. OD, 300/340 lb					0 lb hammer typ.)	GP	Geoprob	e	
り う		WATEF	R TABLE				CA	Continuo	ous Co	ore (Soi	l in Hol	low-Stem Auger)	AR	Air Rotar	ry Cuttings	
			RMINOLOGY F	5	D		G	Grab Sar	mple	from su	face /	testpit	AG	Auger Cu	uttings	
	-		S (ASTM D 248		n							TEST ABBREVIA				
U C		RIPTIVE	RANGE OF	Γ	AL	Atterber	a Limit			PI		ILSI ADDREVIA	TS	Thaw Cons	solidation	1
ם ס	-	RMS	PROPORTION		Consol	Consolio	0			PID		ionization Detector	TV	Torvane		
	TR	ACE	0 - 5%		LMA	Limited	Mechani	cal Analysi	is	Proc	Procto	or	TXCD	Consolidate	ed Drained Triax	ial
2	F	EW	5 - 10%		MA	Sieve ar	nd Hydro	meter Ana	lysis	PP	Pocke	t Penetrometer	TXCU	Consolidate	ed Undrained Tri	axial
D	LIT	TLE	10 - 25%		MC	Moisture	Conter	t		P200	Perce	nt Fines (Silt & Clay)	ΤΧυυ	Unconsolid	lated Undrained	Triaxial
5	SC	DME	30 - 45%		NP	Non-plas	stic			SA	Sieve	Analysis	VS	Vane Shea	ar	
-	MO	STLY	50 - 100%	OLI	Organic	Loss on	Ignition		SpG	Specif	fic Gravity	Ω	Soil Resisti	ivity		
	ANCHORAG	C BLVD. SUITE 300 E. ALASKA 99503 907) 562-3252 ICL882-AK	~			LEG	BEND:	SOIL C	CLA	SSIFI	CAT	ION AND ABB	REVIA	ATIONS		

FILE

1. DESCRIBE SOIL	-	CLASS	IFY SOI	L BY THE	UNIFIED SOIL		
INDEPENDENT O FROZEN STATE	F	C	LASSIF	ICATION S	SYSTEM		
	MAJO	R GROUP			SUBGROL	JP	ICE BONDING SYMBOL
	DESCRIPTION	DESIGN	ATION	DES	CRIPTION	DESIGNATION	No ice-bonded soil
	Segregated			Poorly b	onded of friable	N _f	observed
	ice not visible by eye	N		Well	No excess ice	Nbn	Poorly bonded or friable
2. MODIFY SOIL				bonded	Excess ice	Nbe	
DESCRIPTION B DESCRIPTION OI FROZEN SOIL					I ice crystals or clusions	Vx	Well bonded
	Segregated ice			Ice coati	ngs on particles	Vc	DEFINITIONS
	visible by eye (ice less than 25 mm thick)	V			n or irregularly ice formations	Vr	<u>Candled Ice</u> is ice which has rotted or otherwise formed into long columnar crysta very loosely bonded together.
					ed or distinctly ice formations	Vs	<u>Clear Ice</u> is transparent and contains only a moderate number of air bubbles.
				Uniform	y distributed ice	Vu	<u>Cloudy Ice</u> is translucent, but essentially so and non-pervious.
3. MODIFY SOIL DESCRIPTION BY DESCRIPTION OI	5	ICE		Ice with	soil inclusions	ICE+soil type	<u>Friable</u> denotes a condition in which materi easily broken up under light to moderate pressure.
SUBSTANTIAL IC STRATA				Ice witho	ut soil inclusions	ICE	<u>Granular Ice</u> is composed of coarse, more less equidimensional, ice crystals weakly bonded together.
	FROST DESIGN		SIFIC				Ice Coatings on particles are discernible la
FROST GROUP ⁽²⁾	GENERAL SOIL T		% FIN 0.02	ER THAN mm BY EIGHT		AL USCS CLASS	of ice found on or below the larger soil par in a frozen soil mass. They are sometimes associated with hoarfrost crystals, which h grown into voids produced by the freezing
NFS ⁽³⁾	(a) Gravels Crushed stone Crushed rock	•) - 1.5	GV	V, GP	action. <u>Ice Crystal</u> is a very small individual ice par visible in the face of a soil mass. Crystals r
	(b) Sands			0 - 3		V, SP	be present alone or in a combination with o ice formations.
PFS ⁽⁴⁾ [MOA NFS] [FAA NFS]	(a) Gravels Crushed stone Crushed rock			.5 - 3		v, gp	<u>Ice Lenses</u> are lenticular ice formations in s occurring essentially parallel to each other generally normal to the direction of heat los and commonly in repeated layers.
	(b) Sands			3 - 10	SV	V, SP	Ice Segregation is the growth of ice as dist
[MOA F-2] [FAA FG-2] S1 [MOA F-1] [FAA FG-1]	Gravelly soils			3 - 6	GW, GP, GV	V-GM, GP-GM, C, GP-GC	lenses, layers, veins and masses in soils, commonly but not always oriented normal direction of heat loss.
S1 [MOA F-2] [FAA FG-2]	Sandy soils			3 - 6	SW, SP, SV	V-SM, SP-SM, C, SP-SC	<u>Massive Ice</u> is a large mass of ice, typically nearly pure and relatively homogeneous.
F1 ⁽⁵⁾ [MOA F-1] [FAA FG-1]	Gravelly soils		6	6 - 10		1-GC, GW-GM, V-GC, GP-GC	Poorly-Bonded signifies that the soil particl are weakly held together by the ice and the frozen soil consequently has poor resistan chipping or breaking.
F2 ⁽⁵⁾	(a) Gravelly soi	ls	1	0 - 20		V-GM, GP-GM, C, GP-GC	Porous Ice contains numerous void, usuall interconnected and usually resulting from
[MOA F-2] [FAA FG-2]	(b) Sands		6	6 - 15		1, SP-SM, SC, P-SC, SM-SC	melting at air bubbles or along crystal inter from presence of salt or other materials in water, or from the freezing of saturated sm
F3 ⁽⁵⁾	(a) Gravelly soi		0	ver 20	GM, GO	C, GM-GC	Though porous, the mass retains its struct unity.
[MOA F-3] [FAA FG-3]	(b) Sands, except very sands	fine silty	0	ver 15	SM, SC	C, SM-SC	Thaw-Stable frozen soils do not, on thawin
	(c) Clays, PI>1	2			CL	., CH	show loss of strength below normal, long-t
	(a) Silts				ML, M	H, ML-CL	thawed values nor produce detrimental settlement.
- (5)	(b) Very fine silty s	sands	0	ver 15		C, SM-SC	Thaw-Unstable frozen soils show on thawi
F4 ⁽⁵⁾ [MOA F-4] [FAA FG-4]	(c) Clays, Pl≤1	2			CL,	ML-CL	significant loss of strength below normal, long-time thawed values and/or significant
	(d) Varved clays or other banded sedimer	•				red with ML, MH, SC, or SM-SC	settlement, as a direct result of the melting the excess ice in the soil.

(2) DSACE nosi groups directly correspond to incis groups in Maincipality of Antonradge (MOA) Design Criteria Maintal (DCM), Federal Aviation AC frost groups come from Table 2-2 in Section 2.5.4 of Advisory Circular (AC) 150/5320-6G, Airport Pavement Design and Evaluation (June, 2021).
 (3) Non-frost susceptible
 (4) Possibly frost susceptible, requires lab test for void ratio to determine frost design classification.
 (5) Consistent with MAA Definition.

M: \Fn

FILE NAME:

LEGEND: FROZEN SOIL CLASSIFICATION

ľ			F	21	CRW Engineering Group, Inc. 3940 Arctic Blvd Ste. 300 Anchorage, Alaska 99503 Telephone: (907) 562-3252							BO	RE	HO		B GE 1		
CLIE		Mu	inic	ipa	ity of Anchorage	PRO	JECT NA	ME _C	Quinhagak	Street	Rec	onstru	iction					
PRC	JEC	ΤN	UM	BE	R _10155.00	PRO	JECT LO	CATIC	N Quinha	agak S	tree	t, Ancl	norage	e, Ala	ska			
DAT	E ST	AR	TEI)_!	5/25/22 COMPLETED 5/25/22	GRO	UND ELE	VATIO	ON									
					CTOR Discovery Drilling													
					Hollow-Stem Auger, autohammer	_												
					CHECKED BY AFS/SMH	_												—
	ES_	_				<u>_</u>		DRILL	ING <u>4.35</u>	π		1						_
DEPTH (ft)		5	GRAPHIC	20	MATERIAL DESCRIPTION		e type Iber	/ERY % 2D)	FIELD BLOW COUNTS (N VALUE)	POCKET PEN. (psf)	ICE BOND	DIA (mdd)	OTHER TESTS			20 N V		
	י ב ב	5	GRA				SAMPLE TYPE NUMBER	RECOVERY 9 (RQD)	EIELD COL	POCKE (p	ICE	ਰ ਕੁ	UT OT	1	PL 			0
_	<u>A</u> (<u>C</u>			ASPHALT CONCRETE, (AC) POORLY GRADED SAND WITH SILT AND GRAV (SP-SM) 44% gravel, 45% sand, 11% fines Brown/gray, moist. Subangular to subrounded grave to 3 inches. Frost class F2 (hydrometer).	-	SS S1	88	8-11-14-13 (25)	3		0.9	МА			•		
-	SF SI				38% gravel, 56% sand, 6% fines Frost class F2 (estimated). ✔		SS S2	63	7-9-6-5 (15)			1.2	LMA	0	A			
_ 5	GF GI	M			 POORLY GRADED GRAVEL WITH SILT AND SAT (GP-GM) 51% gravel, 42% sand, 7% fines Brown, wet. Subangular gravel up to 2 inches. Fros class F1 (estimated). SILT WITH GRAVEL, (ML) 20% gravel, 0% sand, 8 	t	SS S3A	75	4-7-7-5 (14)	-		1.5 1.9	SA					
-	-				Gray, moist. Subangular gravel up to 1 inch. Frost of F4 (estimated). SILTY SAND, (SM) 7% gravel, 63% sand, 30% fine Gray, wet. Fine sand. Frost class F3 (estimated).	lasp I	S3B SS S4	88	1-5-7-6	-		1	LMA			0		
- 10	_ SI	M					∕ ∫ ss		(12)	-		1.8						
 	-				SILT, (ML) 0% gravel, 5% sand, 95% fines Gray, wet.		S5A SS S5B	75	1-6-6-8 (12)	-		0.9			(▲····	0		
-	_ M	L															-	
15	м			•	GRAVELLY SILT, (ML) 30% gravel, 0% sand, 70% Gray, wet. Subrounded gravel up to 1.5 inches.	fines	SS S6	100	17-50/5"	-		1		0				>>
					Bottom of borehole at 16.0 feet. Notes: Completed as piezometer, 1" Sch40 PVC, glued sli connections, hand-slotted screen 4-16 ft BGS. Back with cuttings. Steel flushmount monument with 1/2" bolts. Cold patched.	kfilled												

			3940 Arctic Blvd Ste. 300 Anchorage, Alaska 99503 Telephone: (907) 562-3252			ME	Juinhagala	Street	Door		otion			
	·· <u>··</u>	<u></u>	ality of Anchorage ER _10155.00				N Quinnagak							
			5/25/22 COMPLETED 5/25/22											
			RACTOR Discovery Drilling											
			DD_Hollow-Stem Auger, autohammer				RILLING	3.50 ft						
.OGG	SED B	Y_AF	S CHECKED BY _AFS/SMH											
IOTE	s						ING							
п (ft)	s.c.s.	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	/ERY % QD)	FIELD BLOW COUNTS (N VALUE)	POCKET PEN. (psf)	ICE BOND	ID pm)	OTHER TESTS	▲ FIEL	D N VA 20 30	
0 0) D				SAMPL NUN	RECOVERY ((RQD)	FIELD COU	POCKE (p	ICE	Ч (р	LE TO	PL 10		LL
-	GP- GM		ASPHALT CONCRETE, (AC) POORLY GRADED GRAVEL WITH SILT AND SAI (GP-GM) 48% gravel, 40% sand, 12% fines Brown, moist to wet. Subangular to rounded gravel 2.5 inches with cobbles up to 4-5 inches (5% by volume). Frost class F1 (hydrometer).		SS S1	92	11-17-14-9 (31)			2.2	MA	0	· · · · · · ·	.
-	GP- GM	БЩk	(GP-GM) 52% gravel, 38% sand, 10% fines Frost class F1 (estimated). ∑	E E E E E E E E E E E E E E E E E E E	SS S2	63	3-6-4-5 (10)			2.4	LMA	• • • • • • • • • • • • • • • • • • • •		
5	GP		Brown, moist to wet. Angular to subrounded gravel		SS S3	63	5-9-8-7 (17)			2.7		0	•	
- - 10	SMg		SILTY SAND WITH GRAVEL, (SMg) 28% gravel, 5 sand, 15% fines Dark gray to brown, moist to wet. Medium to coarse sand, subangular to subrounded gravel up to 1.5 in Frost class F2 (estimated).	e	× ss s4	17	4-4-4-4 (8)			2.7	SA	0		
-	ML		SILT WITH SAND, (ML) 12% gravel, 18% sand, 70 fines Gray, wet. Subrounded gravel up to 1.5 inches.	1%	SS S5A SS S5B	88	1-2-2-2 (4)			2.5 1.4	LMA	0		
- 15 -	SP- SM ML		POORLY GRADED SAND WITH SILT, (SP-SM) 09 gravel, 92% sand, 8% fines Gray, wet. Fine sand. SILT WITH SAND, (ML) 10% gravel, 10% sand, 80 fines Gray, moist. Fine sand, subrounded gravel up to 1.	1%	SS S6A SS S6B	100	7-14-11-7 (25)			1.3 0.4	LMA		0 ▲ 0	
			inches. Bottom of borehole at 17.0 feet. Notes: Backfilled with cuttings and topped with cold patch asphalt.]										

			CRW Engineering Group, Inc. 3940 Arctic Blvd Ste. 300 Anchorage, Alaska 99503							50			EBH PAGE 1	
			Anchorage, Alaska 99503 Telephone: (907) 562-3252	PROJE	CT NA	ME C	Duinhaqak	Street	Reco	onstru	uction			
							N Quinha					e Alaska	а	
) DN							
			ACTOR Discovery Drilling											-
			D_Hollow-Stem Auger, autohammer					3.00 ft	t					
			S CHECKED BY AFS/SMH	_			RILLING							
NOTE	s			⊻ a	TER	DRILL	ING <u>2.33</u>	ft						
DEPTH (ft)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE I TPE NUMBER	RECOVERY % (RQD)	FIELD BLOW COUNTS (N VALUE)	POCKET PEN. (psf)	ICE BOND	DID (mdd)	OTHER TESTS	10	LD N VA <u>20 30</u> MC	40 LL
0	GP-		- POORLY GRADED GRAVEL WITH SILT AND SAN		0	Ľ.				2.9		10	20 30	40
-	GM ML PT		(GP-GM) 70% gravel, 20% sand, 10% fines Brown, moist. Rounded gravel up to 3.0 inches, one broken cobble 3.5 inches. Frost class F1 (estimated) ORGANIC SOIL, (ML) Dark brown, moist. Silt with organics. Frost class F4 (estimated).		SS S1A SS S1B	/5	4-2-2-2 (4)			3.1				0
-	SP- SM GP- GM	0	 ✓ PEAT, (PT) Dark brown, moist. ✓ POORLY GRADED SAND WITH SILT AND GRAVE (SP-SM) 37% gravel, 53% sand, 10% fines ✓ Dark brown, moist. Subrounded to rounded gravel up 1 inch. Frost class F2 (estimated). 	o to	SS S2A SS S2B SS	75	3-4-5-5 (9)			3.2 2.6 2	LMA)	
5	GN	<u>5 41</u>	POORLY GRADED GRAVEL WITH SILT AND SAN (GP-GM) 70% gravel, 20% sand, 10% fines Brown, moist to wet. Subrounded to rounded gravel u to 2.5 inches. Frost class F1 (estimated).	up	S2C			_		4.9				
-	SP		POORLY GRADED SAND, (SP) 10% gravel, 86% sa 4% fines Gray, wet. Medium sand, subrounded gravel up to 1. inches. Frost class F2 (estimated).	IΛ	SS S3	88	3-4-5-5 (9)	_			LMA		0	
-			SILTY SAND, (SM) 0% gravel, 61% sand, 39% fines Gray, wet. Fine sand. Frost class F4 (estimated).	<u>-</u>	SS S4	63	2-6-7-6 (13)			3.2	LMA		0	
10					SS S5A			_		3.7			0	
-			SILTY CLAY, (CL-ML) 0% gravel, 5% sand, 95% fine Gray, moist to wet, soft to medium, low to medium plasticity. Interbedded silt and clay below 15 ft BGS. VS (Humboldt) = 1045 psf.	IV	SS S5B	88	1-1-3-3 (4)	4167		3.5			C)
-	CL- ML													
15			0% gravel, 10% sand, 90% fines VS (Humboldt) = 1421 psf/42 psf residual.	X	SS S6A	88	1-1-3-8	4167		2.2				
	MLs		SANDY SILT, (MLs) 0% gravel, 46% sand, 54% fine Gray, moist. Fine sand, one rounded piece of gravel 1.25 inches.		SS S6B		(4)			3.1	LMA		Ō	
			Bottom of borehole at 17.0 feet. Notes: Completed as piezometer, 1" Sch40 PVC, glued slip connections, hand-slotted screen 2.75-16.75 ft BGS. Backfilled with cuttings. Steel flushmount monument with 1/2" bolts.											

PROJE DATE DRILL DRILL LOGG	ECT I STAF ING (ING I ED B	NUMBE RTED _ CONTR METHO Y _AFS	Ility of Anchorage I IR 10155.00 I 5/25/22 COMPLETED 5/25/22 I ACTOR Discovery Drilling I D Hollow-Stem Auger, autohammer I S CHECKED BY AFS/SMH I	PROJ GROL GROL	ECT LO IND ELE IND WA AT TIMI AT END	CATIC EVATIC TER LI E OF D	N Quinha	agak S	treet	t, Ancł	norage			
o DEPTH (ft)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	FIELD BLOW COUNTS (N VALUE)	POCKET PEN. (psf)	ICE BOND	(mqq) DIA	OTHER TESTS	10 2	D N VAL 20 30 MC 1 20 30	40
_			 ASPHALT CONCRETE, (AC) POORLY GRADED GRAVEL WITH SAND, (GP) 76% gravel, 22% sand, 2% fines Brown, moist. Cobbles up to 4 inches and likely large (5-10% by volume). Frost class F1 (hydrometer). Split spoon sample considered most representative o grain size distribution and is presented here. Grab 	er /	SS S1	75	7-12-11-9 (23)	-		9.7	MA LMA	0	A	
- - 5	GP		grain size distribution and is presented here. Grab sample also analyzed, see lab report for results.		SS S2	0	7-6-4-7 (10)	-						
-	SM		SILTY SAND, (SM) 4% gravel, 55% sand, 41% fines Gray, moist. Angular gravel up to 1 inch. Trace organ laminae in top of sample. Frost class F4 (estimated). VS (Humboldt) = 2047 psf.	ic	SS S3	54	2-1-3-4 (4)			3.5	LMA	· • • • • • • • • • • • • • • • • • • •	9	
-			LEAN CLAY, (CL) 0% gravel, 5% sand, 95% fines Gray, moist, stiff to medium. Frost class F4 (estimate VS (Humboldt) = 2340 psf.	ed).	SS S4	75	2-2-3-4 (5)	6000		7.9	AL	A	⊢⊖-	
10	CL		VS (Humboldt) = 2507 psf.		SS S5	100	1-2-4-6 (6)	6467		0.8		• • • • • • • • • • • • • • • • • • • •	0	
- 15 -	MLs		SANDY SILT, (MLs) 0% gravel, 45% sand, 55% fines Gray, moist. Fine sand	5-	SS S6	50	3-4-6-6 (10)	-		1.6			9	
			Bottom of borehole at 17.0 feet. Notes: Backfilled with cuttings and topped with cold patch asphalt.											

	ит м	lunicipa	3940 Arctic Blvd Ste. 300 Anchorage, Alaska 99503 Telephone: (907) 562-3252	PROJ		ME C	Quinhagak	Street	Rec	onstru	iction				
							N Quinha					. Alasł	ka		
							ON								
			ACTOR Discovery Drilling												
DRILL		METHO	D Hollow-Stem Auger, autohammer	$\underline{\nabla}$	ΑΤ ΤΙΜ			1.00 ft	t						
OGO	GED B	Y AFS	CHECKED BY _AFS/SMH	_			RILLING								
OTE	S			Ţ	AFTER	DRILL	ING <u>1.98</u>	ft							
UEPIH (ft)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	FIELD BLOW COUNTS (N VALUE)	POCKET PEN. (psf)	ICE BOND	(mqq)	OTHER TESTS	10	ELD N V 20 3	30 4	10
0					SAI	RE		РО	-				L MC	LL 30 4	- 10
-	OL GP- GM SMg		 SANDY ORGANIC SOIL, (OL) POORLY GRADED GRAVEL WITH SILT AND SAND (GP-GM) 50% gravel, 40% sand, 10% fines Gray to brown, moist to wet, subrounded to rounded gravel up to 1.25 inches. Frost class F1 (estimated). SILTY SAND WITH GRAVEL, (SMg) 15% gravel, 42° and, 43% fines 		SS S1A SS S1B	63	1-2-2-2 (4)			0.6	LMA		:		9
- - 5	ML	TTT	Gray to red, moist. Rounded gravel up to 0.75 inches Frost class F4 (estimated). SILT, (ML) 10% gravel, 0% sand, 90% fines Gray, moist, stiff, nonplastic. Rounded gravel up to 1 inches. Frost class F4 (estimated). VS (Humboldt) = 2256 psf.	נ_	SS S2	67	2-3-3-5 (6)	8133		0.4			Ċ)	
-	-		FAT CLAY, (CH) 0% gravel, 0% sand, 100% fines Gray, moist, stiff. Frost class F3 (estimated). VS (Humboldt) = 2005 psf.		SS S3	58	1-2-3-4 (5)	7033		0.3			C)	
-	-		VS (Humboldt) = 2381 psf.		SS S4	75	2-2-2-3 (4)	5376		0.2				0	
<u>10</u> -	СН		VS (Humboldt) = 1421 psf.		SS S5	100	2-2-1-1 (3)	3733		0.3	AL		F=		
- 15	-		SILTY SAND, (SM) 0% gravel, 64% sand, 36% fines		≤ SS ∕\S6A					0.3			0		· · · · · · · · · · · · · · · · · · ·
-	SM		Gray, moist to wet. Fine sand. Bottom of borehole at 17.0 feet.	4	SS S6B	67	3-7-9-13 (16)			0.2	LMA		▲ 		
			Notes: Completed as piezometer, 1" Sch40 PVC, glued slip connections, hand-slotted screen 9.6-14.6 ft BGS. Backfilled with cuttings. Steel flushmount monument with 1/2" bolts.												

	IT _M	unicipa	3940 Arctic Blvd Ste. 300 Anchorage, Alaska 99503 Telephone: (907) 562-3252	PROJ	ECT NA	ME _C	Quinhagak	Street	Rec	onstru	iction			
							N Quinha	-						
			5/25/22 COMPLETED 5/25/22											
			ACTOR Discovery Drilling											
			D Hollow-Stem Auger, autohammer											
			S CHECKED BY AFS/SMH				RILLING _ ING _							
	s				AFIER									
_		U			ЧРЕ В	Υ%	≷αΩ	POCKET PEN. (psf)				▲ FIEI	LD N VAL	.UE
UEPIH (ft)	S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY (RQD)	FIELD BLOW COUNTS (N VALUE)	ET P	ICE BOND	DID (mdd)	OTHER TESTS	10	20 30	40
ПЕ (U.S	GRA			MUN	Ю. К	N V/	NO NO NO NO	ШU	ਰ ਕੁ	ЧЦ	PI	MC	
0					SA	R	Ē	L C				E E	MC 20 30	- - 40
-	AC	FCC			ss									
-		000	POORLY GRADED GRAVEL WITH SAND, (GP) 63% gravel, 32% sand, 5% fines		(S1	75	6-10-6-4 (16)			0.3	SA		N	• • • •
	GP		inches, cobbles up to 4.5 inches (10-15% volume). Fi	rost			(1~)							:
-			class F1 (estimated).					1						:
_			LEAN CLAY, (CL) 0% gravel, 5% sand, 95% fines Gray, moist, soft Layers of sand up to 0 125 inches		ss									
			Gray, moist, soft. Layers of sand up to 0.125 inches thick observed below 7.5 ft BGS. Frost class F4 (estimated).		(S2	75	2-3-3-3 (6)	7167		0			0	:
_			VS (Humboldt) = 2465 psf.	f			(0)							
5				F				1						:
			VS (Humboldt) = 794 psf.	Ν	ss]						
_	CL				\ S3	67	1-1-1-1 (2)	1233		0.1	AL	A · · · · · · ·		
				ľ			(2)							÷
_				-				-						
_			VS (Humboldt) = 752 psf.	Ν	ss									
					S4A	100	1-1-2-5 (3)			0.1			0	
_			SILTY SAND, (SM) 0% gravel, 50% sand, 50% fines	+	ss		(0)			0				
10			Gray, moist to wet. Fine sand. Frost class F4 ∇ (estimated).	ľ	-∖ <u>S4B</u>			1					0	
			- ()	Ν										
-			0% gravel, 72% sand, 28% fines		SS S5	88	6-6-7-6 (13)			0	LMA	· · · · · A	. O	
			070 gravel, 7270 sand, 2070 lines	4			(10)							÷
_	SM			-				-						
_														
-														••••
15														
			SILT WITH SAND, (ML) 0% gravel, 17% sand, 83% fines		ss						LMA		0	
-	ML		Gray, moist.	/	\ S6	63	2-4-9-9 (13)			0.1		••••• ▲		••••
							()							÷
			Bottom of borehole at 17.0 feet.		_			1				·i		
			Notes:											
			Backfilled with cuttings and topped with cold patch asphalt.											

Appendix B

Laboratory Results

Included in this section:

1) Laboratory Results from Alaska Testlab

Cilent: 340 Arctic Blvd, Ste. 300 Archorage, AK, 99503 Project Code: 220546 CC: CRW Maria Kampsen The result solar basis of the stema basis of the stema and particles	rial Test Re	port		Repo	rt No: ASM:22-1 No: 1	312	
Project: Quinhagak St 10155.00 Reviewed By: Maria E Kampsen Title: Senior Engineer Date: 6/10/2022 Cample Details Sample ID Client Sample ID Date Sample ID Date Sample ID Date Sample ID Particle Size Distribution Method: Sieve Size % Passing ASTM D 422 3in 100 Description: 2in 100 Astm 0 4 1 9 4 1 9 4 1 9 4 1 9 4 1 1 9 6 Particle Size 1 1 9 6 1 9 6 1 1 9 6 1 1 9 6 1 1 1 9 6 1 1 1 9 6 1 1 1 1	940 Arctic Blvd., Ste. 300	• .C	CC: CRW	The results	contained below pertain only to th		
Title: Senior Engineer Date: 6/10/2022 Sample D Client Sample ID Date Sampled Senior Engineer 6/10/2022 Sample D Client Sample ID Date Sampled Senior Engineer 6/10/2022 Particle Size Distribution Bi-ot Sat 22-1312-S02 BH-ot Sat BH-ot Sat BH-ot Sat Particle Size Distribution Sieve Size % Passing Operation: 2in 1000 Analysis of Particle Size Distribution in Soils. Sieving for Particles Size, 11/sin 1000 Analysis of Particle Size Distribution in Soils. Sieving for Yain % Orying By: Yain 74 No.4 56 Mashed: No.40 24 No.4 56 Sample Washed No.40 24 No.40 24 No.40 24 No.40 24 No.40 24 No.40 24 <tr< th=""><th>-</th><th></th><th></th><th></th><th>Marc</th><th>Starpsen</th><th></th></tr<>	-				Marc	Starpsen	
Sample ID Client Sample ID Date Sampled 22-1312-S01 BH-01 Sa1 22-1312-S02 BH-01 Sa2 22-1312-S03 BH-01 Sa3A 22-1312-S04 BH-01 Sa3A Particle Size Distribution Sieve Size % Passing Passing Method: Sieve Size % Passing Passing Description: Zin 100 Analysis of Particle Size 1% n 100 Description: Zin 100 Particles Size 1% n 100 Distribution in Soils. Sieving for Distribution in Soils. Sieving for Particles S75µm, Hydrometer No.4 56 Mashed: No.4 56 Sample Washed No.10 41 No.20 31 15.0 Exerciption Exerciption Exerciption Method Results Dispersion device Dispersion device Dispersion device Dispersion device Dispersion device ASTM D 422 Dispersant by hand Dispersion device Dispersant by hand Dispersion device ASTM D 2216 4 4 10 10 Date Tested Size Size Size Size Size Size Size Size	0155.00			Title:	Senior Engine		
BH-01 Sa1 BH-01 Sa2 BH-01 Sa3A BH-01 Sa3B Particle Size Distribution Sieve Size Version Sieve Size Size<	e Details						
Method: Sieve Size % Passing ASTM D 422 3in 100 Description: 2in 100 Analysis of Particle Size 11/sin 100 Distribution in Soils. Sieving for 1in 96 Particles S75µm, Hydrometer 2/sin 68 Drying By: 1/sin 68 Washed: No.4 56 Sample Washed No.10 41 No.20 33 No.40 No.40 24 No.60 17 No.100 14 No.200 11 Finer No.200 (75µm) 15.0 Other Test Results Disperson device Dispersion device ASTM D 422 Disperson time (min) Shape Hardness Hardness Water Content (%) ASTM D2216 4 4 10 10	ample ID						
ASTM D 422 3in 100 Description: 2in 100 Analysis of Particle Size 11/2in 100 Distribution in Soils. Sieving for Particles >75µm, Hydrometer 1/in 96 Dyring By: 3/8in 68 Washed: No.4 56 Sample Washed No.10 41 No.20 33 No.40 No.40 24 No.40 24 No.40 24 No.40 24 No.40 24 No.10 11 No.20 11 Finer No.200 (75µm) 15.0 Other Test Results Dispersion device Dispersion device ASTM D 422 Dispersion device ASTM D 422 Dispersion time (min) Shape Hardness Water Content (%) ASTM D2216 4 4 10 10 Date Tested 5/26/2022 5/26/2022 5/26/2022 5/26/2022 5/26/2022	Size Distribution	า					
Description: 2in 100 Analysis of Particle Size 1½in 100 Distribution in Soils. Sieving for Particles >75µm, Hydrometer 1in 96 Drying By: ½in 74 3/8in 68 Washed: No.4 56 Sample Washed No.10 41 No.20 33 No.40 24 No.60 17 No.100 14 No.200 11 Finer No.200 (75µm) 15.0 Other Test Results Description Description Method Results Dispersion device ASTM D 422 Dispersant by hand Dispersion time (min) Shape Hardness Water Content (%) ASTM D2216 4 4 10 10 Date Tested 5/26/2022 5/26/2022 5/26/2022 5/26/2022				% Pas	sing		Limits
Description 1½in 100 Analysis of Particle Size 1½in 100 Distribution in Soils. Sieving for Particles >75µm, Hydrometer 1in 96 Drying By: ½in 74 3/8in 68 Washed: No.4 56 Sample Washed No.10 41 No.20 33 No.40 24 No.60 17 No.100 14 No.200 11 Finer No.200 (75µm) 15.0 Other Test Results Dispersion device Dispersion device ASTM D 422 Dispersion time (min) Shape Hardness Water Content (%) Water Content (%) ASTM D2216 4 4 10 10 Date Tested 5/26/2022 5/26/2022 5/26/2022 5/26/2022 5/26/2022							
Analysis of Particle Size 1in 96 Particles >75µm, Hydrometer ¾in 82 Drying By: ¾in 74 3/8in 68 Washed: No.4 56 Sample Washed No.10 41 No.20 33 No.40 24 No.60 17 No.100 14 No.200 11 Finer No.200 11 Finer No.200 11 Finer No.200 15.0 Other Test Results Dispersion device Dispersion device ASTM D 422 Dispersion time (min) Shape Hardness Water Content (%) ASTM D2216 4 4 10 10 Date Tested 5/26/2022 5/26/2022 5/26/2022 5/26/2022 5/26/2022	1011.						
Description Method Results Dispersion device Method Results Dispersion time (min) ASTM D 2216 4 4 10 10 Mater Content (%) ASTM D 2216 4 4 10 10	JI Fallicle Size						
Drying By: ½in 74 3/8in 68 Washed: No.4 56 Sample Washed No.10 41 No.20 33 No.40 24 No.60 17 No.100 14 No.200 11 Finer No.200 11 Finer No.200 (75µm) 15.0	in in conc. Croving for						
3/8in 68 Washed: No.4 56 Sample Washed No.10 41 No.20 33 No.40 24 No.60 17 No.100 14 No.200 11 Finer No.200 (75µm) 15.0 Other Test Results Dispersion device ASTM D 422 Dispersant by hand Dispersion time (min) Shape Hardness Water Content (%) ASTM D2216 4 4 10 10 Date Tested 5/26/2022 5/26/2022 5/26/2022 5/26/2022 5/26/2022		in	74				
WashedNo.1041Sample WashedNo.2033No.4024No.6017No.10014No.20011Finer No.200 (75µm)15.0Other Test ResultsDescriptionMethodResultsDispersion deviceDispersion deviceASTM D 422Dispersant by handDispersion time (min)ShapeUse (Min Dispersion time (Min))ASTM D 2216441010Date Tested5/26/20225/26/20225/26/20225/26/20225/26/2022	3/8						
No.20 33 No.40 24 No.60 17 No.100 14 No.200 11 Finer No.200 (75µm) 15.0 Description Method ASTM D 422 Dispersant by hand Dispersion device ASTM D 422 Dispersant by hand Dispersion time (min) Shape Hardness Water Content (%) ASTM D2216 4 4 10 10 Date Tested 5/26/2022 5/26/2022 5/26/2022							
No.40 24 No.60 17 No.100 14 No.200 11 Finer No.200 (75µm) 15.0 Other Test Results Description Method Results Dispersion device ASTM D 422 Dispersant by hand Dispersion time (min) Shape Hardness 10 Water Content (%) ASTM D2216 4 4 10 10 Date Tested 5/26/2022 5/26/2022 5/26/2022 5/26/2022	Vasheu						
No.60 17 No.100 14 No.200 11 Finer No.200 (75µm) 15.0 Other Test Results Description Method Results Dispersion device ASTM D 422 Dispersant by hand Dispersion time (min) Shape Hardness Water Content (%) ASTM D2216 4 4 4 10 10 Date Tested 5/26/2022 5/26/2022 5/26/2022							
No.10014 No.20011 Timer No.200 (75µm)15.0Other Test ResultsDescriptionMethodResultsDispersion deviceASTM D 422Dispersant by handDispersion time (min) Shape HardnessASTM D221644Water Content (%)ASTM D22164410Date Tested5/26/20225/26/20225/26/2022							
No.20011 Finer No.200 (75µm)15.0Other Test ResultsDescriptionMethodResultsDispersion deviceASTM D 422Dispersant by handDispersion time (min) Shape HardnessSTM D 22164Water Content (%)ASTM D221644Dispersed5/26/20225/26/2022State5/26/20225/26/2022							
Description Method Results Dispersion device ASTM D 422 Dispersant by hand Dispersion time (min) Shape Hardness Vater Content (%) ASTM D2216 Mater Tested 5/26/2022 5/26/2022 5/26/2022							
DescriptionMethodResultsDispersion deviceASTM D 422Dispersant by handDispersion time (min)ShapeHardnessWater Content (%)ASTM D2216441010Date Tested5/26/20225/26/2022	Find	ier No.200 (75µm)	15.0				
Dispersion device ASTM D 422 Dispersant by hand Dispersion time (min) Shape Hardness Water Content (%) ASTM D2216 4 4 10 10 Date Tested 5/26/2022 5/26/2022 5/26/2022	est Results						
Dispersion time (min) Shape Hardness	ion Me	ethod		Resul	ts		Limits
Shape Hardness Water Content (%) ASTM D2216 4 4 10 10 Date Tested 5/26/2022 5/26/2022 5/26/2022 5/26/2022		TM D 422	Dispersant by hand				
Hardness Water Content (%) ASTM D2216 4 4 10 10 Date Tested 5/26/2022 5/26/2022 5/26/2022 5/26/2022 5/26/2022	ו time (min)						
Water Content (%) ASTM D2216 4 4 10 10 Date Tested 5/26/2022 5/26/2022 5/26/2022 5/26/2022							
Date Tested 5/26/2022 5/26/2022 5/26/2022 5/26/2022		TM D2216	4	4	10	10	
		DEL TO		-			
			Karen Jackson	Karen Jackson	Karen Jackson		
Group Code ASTM D2487 SP-SM GP-GM							
Group Name Poorly graded sand with silt and gravel Poorly graded gravel with silt and sand		Poorly gr		Poor			
Atterberg Limits Estimated Yes Yes							
Gravel (%) 44 51 Sand (%) 45 42)						
Fines (%) 45 42							
Tested By ASTM D2487 John Platt Frank Walters		TM D2487			=		
Percent Gravel LMA (Internal Method) 38			i)	38			
Percent Sand 56	and			56			
Percent Fines (Silt/Clay) 6							
Group Symbol SP-SM							
Group Name Poorly graded sand with silt and gravel	me		Poorly gr	aueu sano with silt and gravel			

ATL	

Material Test Report					Repor Issue	t No: ASM:22-13 No: 1	312	
Client:	CRW Engineering Group	o, LLC	Project Code: 220546			ntained below pertain only to the xcept in full, without the prior writ		
	3940 Arctic Blvd., Ste. 3 Anchorage, AK, 99503	00	CC: CRW Maria Kampsen					
Project:	Quinhagak St					Marte	Farpser	
	10155.00				Reviewe Title: Date:	d By: Maria E Kamp Senior Engine 6/10/2022		
Samp	le Details							
	e ID Sample ID ampled		22-1312-S01 BH-01 Sa1	22-1312 BH-01		22-1312-S03 BH-01 Sa3A	22-1312-S04 BH-01 Sa3B	
Other	Test Results							
Descri	otion	Method			Results	3		Limits
	tion Method site Sieving?	ASTM D6913				A Oven Dry Yes		
	ing Sieve(s)					No. 4		
Cu Cc		ASTM D2487				35.20 4.36		

Soil Classification of Fines (-#200) in LMAs Assumed Unless Verified by Additional Testing

ATL	

Mate	erial Test R	Report		IS	eport No: ASM:2 sue No: 1		
Client:	CRW Engineering Group 3940 Arctic Blvd., Ste. 30 Anchorage, AK, 99503		Project Code: 220546 CC: CRW Maria Kampsen			nly to the items tested below. This repor prior written approval of Alaska Testlab	
Project:	Quinhagak St				M	n Etapser	
	10155.00			Re Titl Da		ngineer	
Samp	le Details						
Sample	e ID Sample ID		22-1312-S05 BH-01 Sa4	22-1312-S0 BH-01 Sa5/			
	Test Results						
Descrip		Method		Re	sults		Limits
	ontent (%)	ASTM D2216	22	2		3 8	
Date Te			5/26/2022	5/26/202			
Tested E Percent		LMA (Internal Meth	Karen Jackson od) 7	Karen Jackso	n Karen Jackso	n Karen Jackson	
Percent Group S Group N Tested E	lame		30 SM Silty sand Frank Walters				
Comm Soil Clas	1ents sification of Fines (-#200)	in LMAs Assume	d Unless Verified by Ac	lditional Testing	1		

ATL				Alaska Testlab - Anchorag 4040 B Street, Suite 10 Anchorage, AK 9950 Phone: 907-205-198 Fax: 907-782-440 info@alaskatestlab.co
Material Tes	st Report		R	Report No: MAT:22-1312-S01 Issue No: 1
Client: CRW Engineerin 3940 Arctic Blvd. Anchorage, AK, S	g Group, LLC , Ste. 300	Project Code: 220546 CC: CRW Maria Kampsen	Th	The results contained below pertain only to the items tested below. This report should not be eproduced, except in full, without the prior written approval of Alaska Testlab or the agency.
Project: Quinhagak St				Mar Apropser
10155.00			Ti	Reviewed By: Maria E Kampsen Fitle: Senior Engineer Date: 6/10/2022
Sample Details				Particle Size Distribution
Sample ID Client Sample ID Specification	22-1312-S01 BH-01 Sa1 Sieve SOILS			Method:ASTM D 422Date Tested:6/9/2022Tested By:John Platt
				Sieve Size % Passing Limits 3in 100 2in 100 1½in 100 1in 96 ¾in 82 ½in 74
Other Test Resul	ts			3/8in 68
Description Dispersion device Dispersion time (min) Shape Hardness Water Content (%) Date Tested Tested By Group Code Group Name Atterberg Limits Estima Gravel (%) Sand (%) Fines (%) Tested By Date Tested	ASTM D2 ASTM D2 Poorly graded sand w	2216 4 5/26/2022 Karen Jackson 2487 SP-SM ith silt and gravel Yes 44 45 11 2487 John Platt	Limits	No.4 56 No.10 41 No.20 33 No.40 24 No.60 17 No.100 14 No.200 11 Finer No.200 (75µm) 15.0 33.6 µm 6.6 21.6 µm 5.0 12.5 µm 4.4
Date Tested		6/9/2022		Chart
				N finang

Soil Classification of Fines (-#200) in Sieve Analyses Assumed Unless Verified by Additional Testing No Plasticity Index Test Performed

ATL	Alaska Testlab - Anchorage 4040 B Street, Sulite 102 Anchorage, AK 99503 Phone: 907-205-1987 Fax: 907-782-4409 info@alaskatestlab.com
Material Test Report	Report No: MAT:22-1312-S03 Issue No: 1
Client: CRW Engineering Group, LLC Project Code: 220546 3940 Arctic Blvd., Ste. 300 CC: CRW Anchorage, AK, 99503 Maria Kampsen Project: Quinhagak St	The results contained below pertain only to the items tested below. This report should not be reproduced, except in full, without the prior written approval of Alaska Testlab or the agency.
10155.00	Reviewed By: Maria E Kampsen Title: Senior Engineer Date: 6/10/2022
Sample Details	Particle Size Distribution
Sample ID22-1312-S03Client Sample IDBH-01 Sa3A	Method: ASTM D6913 Drying By: Oven Date Tested: 6/3/2022 Tested By: Frank Walters
	Sieve Size % Passing Limits 3in 100 2in 100 1½in 100 1in 97 ¾in 89 ½in 81
Other Test Results	3/8in 74
DescriptionMethodResultLimitsWater Content (%)ASTM D221610Date Tested5/26/2022Tested ByKaren JacksonGroup CodeASTM D2487GP-GMGroup NamePoorly graded gravel with silt and sandAtterberg Limits EstimatedYesGravel (%)51Sand (%)42Fines (%)7ASTM D2487Tested ByFrank WaltersDate Tested6/3/2022MethodASTM D6913APreparation MethodComposite Sieving?YesSeparating Sieve(s)No. 4	No.10 27 No.20 18 No.40 14 No.60 11 No.100 9 No.200 7
Cu ASTM D2487 35.20	Chart
Cc 4.36 Date Tested 6/3/2022	Diameter 100 60 20 6 2 600 200 100 50 $100 \frac{6}{90}$ 2 $100 \frac{100}{90}$

Sample Size Does Not Meet ASTM Requirements Soil Classification of Fines (-#200) in Sieve Analyses Assumed Unless Verified by Additional Testing No Plasticity Index Test Performed

Material Test F	Report		Repo	rt No: ASM:22- No: 1	9	laskatestlab.c
Client: CRW Engineering Group	o, LLC	Project Code: 220	546 The results	contained below pertain only to	the items tested below. This repo written approval of Alaska Testlab	
3940 Arctic Blvd., Ste. 3 Anchorage, AK, 99503	00	CC: CRW Maria Kamps	sen	V 1		
Project: Quinhagak St				Mar	Etapser	
10155.00			Review Title: Date:	ed By: Maria E Kan Senior Engir 6/10/2022		
Sample Details			<u> </u>			
Sample ID Client Sample ID Date Sampled		22-1313-S01 BH-02 Sa1	22-1313-S02 BH-02 Sa2	22-1313-S03 BH-02 Sa3	22-1313-S04 BH-02 Sa4	
Particle Size Distribut	tion					
Method:	Sieve Size		% Pas	sing		Limits
ASTM D 422	3in 2in	100 100				
Description:	1½in	98				
Analysis of Particle Size Distribution in Soils. Sieving for	1in	94				
Particles >75µm, Hydrometer	³∕₄in	88				
Drying By:	¹∕₂in	76				
	3/8in	69				
Washed:	No.4 No.10	52 36				
Sample Washed	No.20	28				
	No.40	20				
	No.60	17				
	No.100	14				
	No.200 Finer No.200 (75µm)	12 15.6				
Other Test Results		10.0				
Description	Method		Resul	te		Limits
Dispersion device	ASTM D 422	Dispersant by hand	ive3ui	13		Linits
Dispersion time (min)						
Shape						
Hardness						
Water Content (%) Date Tested	ASTM D2216	3 5/26/2022	5 5/26/2022	6 5/26/2022	9 5/26/2022	
Tested By		Karen Jackson	Karen Jackson	Karen Jackson	Karen Jackson	
Group Code	ASTM D2487	GP-GM			SM	
Group Name	Poorly	graded gravel with silt and sand			Silty sand with gravel	
Atterberg Limits Estimated		Yes			Yes	
Gravel (%)		48			28	
Sand (%) Fines (%)		40 12			57 15	
Tested By	ASTM D2487	Quinton Goodman			Frank Walters	
Percent Gravel	LMA (Internal Meth	•	52			
Percent Sand	, ·····		38			
Percent Fines (Silt/Clay)			10			
Group Symbol		D	GP-GM			
Group Name		Poc	orly graded gravel with silt and sand Frank Walters			
Tested By						

ATL	

Material Test Report					Repor Issue	t No: ASM:22-1: No: 1	313	
Client:	CRW Engineering Grou 3940 Arctic Blvd., Ste. 3 Anchorage, AK, 99503		Project Code: 220546 CC: CRW Maria Kampsen			ontained below pertain only to the except in full, without the prior wri		
Project:	Quinhagak St					Mart	Apopser	
	10155.00				Reviewe Title: Date:	ed By: Maria E Kamp Senior Engine 6/10/2022		
Samp	le Details							
	e ID Sample ID ampled		22-1313-S01 BH-02 Sa1	22-1313 BH-02		22-1313-S03 BH-02 Sa3	22-1313-S04 BH-02 Sa4	
Other	Test Results							
Compos	otion tion Method site Sieving? ing Sieve(s)	Method ASTM D6913 ASTM D2487			Result	S	A Oven Dry Yes No. 4	Limits

Comments

Soil Classification of Fines (-#200) in LMAs Assumed Unless Verified by Additional Testing

AIL

	erial Test F	-			port No: ASM:22- ue No: 1		
	CRW Engineering Group 3940 Arctic Blvd., Ste. 30 Anchorage, AK, 99503		Project Code: 220546 CC: CRW Maria Kampsen	6 The re reproc	sults contained below pertain only to luced, except in full, without the prior	o the items tested below. This repor written approval of Alaska Testlab	rt should not be or the agency.
	Quinhagak St				Nar	Etapsen	
	10155.00			Rev Title Date	0		
Sampl	e Details			Date	5. 0/10/2022		
Sample Client S	ID ample ID		22-1313-S05 BH-02 Sa5A	22-1313-S06 BH-02 Sa5B		22-1313-S08 BH-02 Sa6B	
Date Sa	mpled Test Results						
				De			1
Descrip	tion ontent (%)	Method ASTM D2216	11	9 9	sults 25	22	Limits
Date Tes		AG110 D2210	5/26/2022	5/26/2022		5/26/2022	
Tested B			Karen Jackson	Karen Jackson	Karen Jackson	Karen Jackson	
Percent (LMA (Internal Meth	od)	12			
Percent S				18			
	Fines (Silt/Clay)			70			
Group Sy				ML			
Group Na Tested B				Frank Walters	Poorly graded sand with silt Frank Walters		
comm			d Unless Verified by Ad				

ATL			Alaska Testlab - Anchorage 4040 B Street, Suite 102 Anchorage, AK 99503 Phone: 907-205-1987 Fax: 907-782-4409 info@alaskatestlab.com
Material Test	Report	Re	eport No: MAT:22-1313-S01 sue No: 1
Client: CRW Engineering Gr 3940 Arctic Blvd., Ste Anchorage, AK, 9950 Project: Quinhagak St 10155.00	e. 300 CC: CRW	5 The r repro Rev Title	results contained below pertain only to the items tested below. This report should not be oduced, except in full, without the prior written approval of Alaska Testlab or the agency.
		Dat	
Client Sample ID B	2-1313-S01 3H-02 Sa1 Sieve SOILS		Particle Size Distribution Method: ASTM D 422 Date Tested: 6/9/2022 Tested By: Quinton Goodman Sieve Size % Passing Limits 3in 100
Other Test Results	Mothod Posult	Limite	2in 100 1½in 98 1in 94 ¾in 88 ½in 76 3/8in 69
Atterberg Limits Estimated Gravel (%) Sand (%) Fines (%)	MethodResultASTM D 422Dispersant by handDispersant by hand3ASTM D221635/26/20225/26/2022Karen Jackson3ASTM D2487GP-GMborly graded gravel with silt and sandYes484012ASTM D2487	Limits	No.452No.1036No.2028No.4020No.6017No.10014No.20012Finer No.200 (75 μ m)15.633.3 μ m6.321.2 μ m5.812.3 μ m5.3
Tested By Date Tested	Quinton Goodman 6/9/2022		Chart
Commonto			To the arry of the

Soil Classification of Fines (-#200) in Sieve Analyses Assumed Unless Verified by Additional Testing No Plasticity Index Test Performed

ATL	$\mathbf{>}$						Alas	ska Testlab - Anchorage 4040 B Street, Suite 102 Anchorage, AK 99503 Phone: 907-205-1987 Fax: 907-782-4409 info@alaskatestlab.com
Materia	al Test Rep	oort			Report Issue	: No: MA [:] No: 1	T:22-1313-S04	
Client: CRW 3940	Engineering Group, LLC Arctic Blvd., Ste. 300 orage, AK, 99503	: Projec	t Code: 22054(C: CRW Maria Kampsen	5	The results cor reproduced, ex	ntained below pert	ain only to the items tested below It the prior written approval of Ala Man Harris	
1015	5.00				Reviewed Title: Date:		E Kampsen or Engineer 2022	
Sample D	etails				Pa	rticle S	ize Distributi	on
Sample ID Client Samp	22-1313- le ID BH-02 Sa				Dry Date	hod: ing By: e Tested: ted By:	ASTM D6913 Oven 6/3/2022 Frank Walters	
					3in 2in 1½ii 1in ∛₄in	ve Size n	% Passing 100 100 100 100 95	
Other Tes	t Results				1⁄₂in 3/8ii	n	91 85	
Description Water Conter Date Tested Tested By Group Code Group Name Atterberg Lim Gravel (%) Sand (%) Fines (%) Tested By Date Tested Method Preparation M Composite Si Separating Si	hits Estimated	ASTM D2487 Silty sand ASTM D2487	Result 9 5/26/2022 en Jackson SM with gravel Yes 28 57 15 nk Walters 6/3/2022 A Oven Dry Yes No. 4	Limits	No.2 No.2 No.2 No.6 No.7 No.2	4 10 20 40 60 100	72.1 58 44 32 24 19 15	
Cu		ASTM D2487						
Cc Date Tested			6/3/2022		Sin Sin		Diameter 20 6 2 mm 1* 1/2* #4 #10	600 200 100 50 μm μπ μη μη μη

Sample Size Does Not Meet ASTM Requirements Soil Classification of Fines (-#200) in Sieve Analyses Assumed Unless Verified by Additional Testing No Plasticity Index Test Performed

ATL

	Material Test Report				R	Report No: ASM:22-1314 Issue No: 1				
TU155.00 Province Marker Kampener The information Sample ID Diato Sample ID Di	Client:	CRW Engineering Grou 3940 Arctic Blvd., Ste. 3	ip, LLC	CC: CRW	546	e results contained below	pertain only to the iter	ns tested below. This repor	t should not be or the agency.	
Tite: Senior Engineer (H102022) Sample ID Gient Sample ID Date Sample ID Dat	Project:	Quinhagak St					Mart	farpser)		
Sample D 22-1314-501 22-1314-502 22-1314-503 22-1314-503 22-1314-503 22-1314-503 22-1314-503 22-1314-503 22-1314-503 22-1314-503 22-1314-503 22-1314-503 22-1314-503 22-1314-503 22-1314-503 22-1314-503 22-1314-503 22-1314-503 BH-03 Sa2B Deternation Bescription Method 37 164 1		10155.00			Ti	tle: Ser	nior Engineer	n		
Sample D 22-1314-501 22-1314-502 22-1314-503 22-1314-503 22-1314-503 22-1314-503 22-1314-503 22-1314-503 22-1314-503 22-1314-503 22-1314-503 22-1314-503 22-1314-503 22-1314-503 22-1314-503 22-1314-503 22-1314-503 22-1314-503 BH-03 Sa2B Deternation Bescription Method 37 164 1	Samp	le Details								
Other Test Results Description Method 37 164 1 12 Date Tested S/26/202	Sample Client S	e ID Sample ID								
Water Content (%) ASTM D2216 37 164 14 12 Date Tested 5/26/202 5/26/202 5/26/202 5/26/202 Tested By Karen Jackson Karen Jackson Karen Jackson Karen Jackson Percent Gravel LMA (Internal Method) 37 Percent Side (Silt/Clay) 10 Group Symbol SP-SM Group Name Frank Walters										
Date Tested 5/26/2022 5/26/2022 5/26/2022 5/26/2022 Tested By Karen Jackson Karen Jackson Karen Jackson Arren Jackson Percent Gravel LMA (Intenal Method) 37 Percent Gravel 10 35 Percent Fires (SII/Clay) 10 Group Symbol SP-SM Group Name Tested By Frank Walters									Limits	
Percent Gravel LMA (Internal Method) 53 Percent Fines (Silt/Clay) 10 Group Symbol SP-SM Group Name Tootgradet act what the age with the act with the	Date Te	sted	ASTM D2216	5/26/2022	5/26/202	22 5/2	6/2022	5/26/2022		
	Percent Percent Group S Group N	Sand Fines (Silt/Clay) Symbol Iame					Poorly gra	53 10 SP-SM ded sand with silt and gravel		
	-									
) in LMAs Assume	ed Unless Verified by	Additional Testir	ng				

ATL

viate	erial Test F	Report		Issu	ort No: ASM:22- e No: 1		
Client:	CRW Engineering Grou 3940 Arctic Blvd., Ste. 3 Anchorage, AK, 99503		Project Code: 22054 CC: CRW Maria Kampser	reproduce	s contained below pertain only to d, except in full, without the prior	the items tested below. This repor written approval of Alaska Testlab	t should not be or the agency.
Project:	Quinhagak St				Mar	Etapse	
	10155.00			Reviev Title: Date:	ved By: Maria E Kar Senior Engii 6/10/2022		
Samp	le Details						
Sample Client S			22-1314-S05 BH-03 Sa2C	22-1314-S06 BH-03 Sa3	22-1314-S07 BH-03 Sa4	22-1314-S08 BH-03 Sa5A	
	Test Results						
Descrip	otion	Method		Resu	lts		Limits
Date Te		ASTM D2216	11 5/26/2022 Karen Jackson	18 5/26/2022 Karen Jackson	22 5/26/2022	26 5/26/2022 Cindy Zickofoooo	
Tested E Percent		LMA (Internal Meth		10	Karen Jackson 0	Cindy Zickefoose	
Percent	Sand Fines (Silt/Clay) symbol	LMA (internal metr	100)	86 4 SP Poorly graded sand	61 39 SM Silty sand		

Mat	erial Test F	Report		R Is	sue N	NO: ASM:22-13 o: 1	514	
Client:	CRW Engineering Group 3940 Arctic Blvd., Ste. 3	p, LLC	Project Code: 2205	The The	e results conta	ined below pertain only to the	items tested below. This rep ten approval of Alaska Testlat	ort should not be o or the agency.
	Anchorage, AK, 99503		CC: CRW Maria Kampse	en		¥		
Project:	Quinhagak St					Marte	Harpsen	
				Re	eviewed	By: Maria E Kamp	sen	
	10155.00			Tit	tle: ate:	Senior Engine 6/10/2022		
Samp	le Details			"				
Sample Client S			22-1314-S09 BH-03 Sa5B	22-1314-S1 BH-03 Sa6		22-1314-S11 BH-03 Sa6B		
	Test Results							
Descrip	ption	Method		R	esults			Limits
	Content (%)	ASTM D2216	32		68	20		
Date Te Tested I			5/26/2022 Karen Jackson	5/26/202 Karen Jackso		5/26/2022 Karen Jackson		
Percent		LMA (Internal Metho			ווע r	0		
Percent		、	- /			46		
	Fines (Silt/Clay)					54		
Group S						ML Sondy silt		
Group N Tested I						Sandy silt Frank Walters		
Testeur	Бу							
	· · · · · · · · · · · · · · · · · · ·							
Comn								
Soil Clas	sification of Fines (-#200)) in LMAs Assumed	Unless Verified by	Additional Testin	ng			

Material Test F	Report		Report No: ASM Issue No: 1	A:22-1315	
Client: CRW Engineering Group 3940 Arctic Blvd., Ste. 3 Anchorage, AK, 99503		Project Code: 220546 CC: CRW Maria Kampsen	The results contained below pertained	ain only to the items tested below. This report t the prior written approval of Alaska Testlab of	t should not be or the agency.
Project: Quinhagak St			Reviewed By: Maria	Mar Etanpser	
10155.00				r Engineer	
Sample Details					
Sample ID Client Sample ID Date Sampled		22-1315-S01 BH-04 Sa1S	22-1315-S02 BH-04 Sa1G	22-1315-S03 BH-04 Sa3	
Particle Size Distribut	tion				
Method:	Sieve Size		% Passing		Limits
ASTM D 422	3in	100			
Description:	2in 1½in	100 90			
Analysis of Particle Size	. –	90 81			
Distribution in Soils. Sieving for Particles >75µm, Hydrometer	³⁄₄in	78			
	^{7₄} 11 1∕₂in	69			
Drying By:	3/8in	64			
	No.4	51			
Washed:	No.10	35			
Sample Washed	No.20	26			
	No.40	18			
		13			
	No.60				
	No.100	10 8.5			
	No.200	6.5 12.5			
	Finer No.200 (75µm)	12.5			
Other Test Results					
Description	Method	Dispersant by hand	Results		Limits
Dispersion device Dispersion time (min)	ASTM D 422	Dispersarit by hariu			
Shape					
Hardness					
Water Content (%)	ASTM D2216	5	3	20	
Date Tested	NOTIN B2210	5/26/2022	5/26/2022	5/26/2022	
Tested By		Karen Jackson	Karen Jackson	Karen Jackson	
Group Code	ASTM D2487	GP-GM	Raion buokoon		
Group Name		Poorly graded gravel with silt and sand			
Atterberg Limits Estimated		Yes			
Gravel (%)		49			
Sand (%)		40			
Fines (%)		9			
Tested By	ASTM D2487	Nathan Wilson			
Percent Gravel	LMA (Internal Metho		76	4	
Percent Sand		,	22	55	
Percent Fines (Silt/Clay)			2	41	
Group Symbol			GP	SM	
			Poorly graded gravel with sand	Silty sand	
Group Name					

Material Test F	Report		Report No: ASM:22-1315 Issue No: 1				
Client: CRW Engineering Grou	-	Project Code: 220546	Issue No: 1 The results contained below pertain only to the items tested below. This report should not be reproduced, except in full, without the prior written approval of Alaska Testlab or the agency.				
3940 Arctic Blvd., Ste. 3 Anchorage, AK, 99503	800	CC: CRW Maria Kampsen					
Project: Quinhagak St			Un	Etraso.			
			- 194	reprise			
10155.00			Reviewed By: Maria E K				
			Title: Senior En Date: 6/10/2022	-			
Sample Details			•				
Sample ID		22-1315-S04	22-1315-S05	22-1315-S06			
Client Sample ID		BH-04 Sa4	BH-04 Sa5	BH-04 Sa6			
Date Sampled Other Test Results							
Description	Method		Results		Limits		
Water Content (%)	ASTM D2216	30	29	20	Linits		
Date Tested		5/28/2022 Karon Jaakaan	5/26/2022 Karon Jaakaan	5/26/2022			
Tested By Group Code	ASTM D2487	Karen Jackson CL	Karen Jackson	Karen Jackson			
Group Name		Lean clay					
Material Proportions Estimated		Yes					
Gravel (%)		0					
Sand (%)		0 100					
Fines (%) Tested By	ASTM D2487	Cindy Zickefoose					
Liquid Limit	ASTM D4318	43					
Plastic Limit		23					
Plasticity Index		20					
Preparation Method		Wet					
Oversize Removed By Liquid Limit Apparatus		Hand during mixing on glass plate Mechanical					
Grooving Tool		Plastic					
Rolling		Hand					
Tested By		Cindy Zickefoose					
Date Tested		6/7/2022					

Alaska Testlab - Anchorage

ATL	Alaska Testilab - Anchorage 4040 B Street, Suite 102 Anchorage, AK 99503 Phone: 907-205-1987 Fax: 907-782-4409 info@alaskatestlab.com
Material Test Report	Report No: MAT:22-1315-S01 Issue No: 1
Client: CRW Engineering Group, LLC Project Code: 220546 3940 Arctic Blvd., Ste. 300 CC: CRW Anchorage, AK, 99503 Maria Kampsen Project: Quinhagak St 10155.00 Sample Details	The results contained below pertain only to the items tested below. This report should not be reproduced, except in full, without the prior written approval of Alaska Testlab or the agency. Warehouse Reviewed By: Maria E Kampsen Title: Senior Engineer Date: 6/10/2022 Particle Size Distribution Method: ASTM D 422
Sample ID 22-1315-S01 Client Sample ID BH-04 Sa1S Specification Sieve SOILS	Date Tested: 6/9/2022 Tested By: Nathan Wilson Sieve Size % Passing Limits 3in 100 2in 100 1½in 90 1in 81 ¾in 78 ½in 69
Other Test Results	3/8in 64
DescriptionMethodResultLimitsASTM D 422Dispersion deviceDispersant by handDispersion time (min)ShapeHardnessWater Content (%)ASTM D2216Date Tested5/26/2022Tested ByKaren JacksonGroup CodeASTM D2487Group NamePoorly graded gravel with silt and sandAtterberg Limits EstimatedYesGravel (%)49Sand (%)42Fines (%)9ASTM D2487	No.4 51 No.10 35 No.20 26 No.40 18 No.60 13 No.100 10 No.200 8.5 Finer No.200 (75µm) 12.5 33.9 µm 4.7 21.6 µm 4.2 12.5 µm 3.7
Tested ByNathan WilsonDate Tested6/9/2022	Chart
	to finang

Soil Classification of Fines (-#200) in LMAs Assumed Unless Verified by Additional Testing No Plasticity Index Test Performed

ATL

Material Test Report					Report No: ASM:22-1326 Issue No: 1				
Client:	CRW Engineering Group 3940 Arctic Blvd., Ste. 30 Anchorage, AK, 99503	o, LLC	Project Code: 220 CC: CRW Maria Kamp		The results co	ntained below pertain only to th	ne items tested below. This repor ritten approval of Alaska Testlab		
Project:	Quinhagak St					Man	Etapsen		
	10155.00				Reviewee Title: Date:	d By: Maria E Kam Senior Engin 6/10/2022			
Samp	le Details								
	e ID Sample ID ampled		22-1326-S01 BH-05 Sa1A	22-1326 BH-05 \$		22-1326-S03 BH-05 Sa2	22-1326-S04 BH-05 Sa3		
Other	Test Results								
Descri		Method			Results			Limits	
Water C Date Te	Content (%)	ASTM D2216	11 5/26/2022	5/26/2	22 2022	28 5/28/2022	28 5/26/2022		
Tested I			Karen Jackson	Karen Jac		Karen Jackson	Karen Jackson		
Percent Percent Group S Group N Tested I	Sand Fines (Silt/Clay) Symbol Iame	LMA (Internal Meth	00)	Silty sand with Frank Wa					
Com									
Comn Soil Clas	nents sification of Fines (-#200)	in LMAs Assume	d Unless Verified b	Additional Te	stina				
		ie , ioouine		,					

Material Test F	Report		R	lepo	ort No: ASM:22-1 9 No: 1	326	
Client: CRW Engineering Grou		Project Code: 2205	The The	e results	contained below pertain only to the , except in full, without the prior wr	e items tested below. This repor	t should not be or the agency.
3940 Arctic Blvd., Ste. 3	00	CC: CRW Maria Kampse					5 ,
Anchorage, AK, 99503 Project: Quinhagak St					Jane	Harpsen	
					<u> </u>	a 1. •	
10155.00				eview tle:	ed By: Maria E Kamp Senior Engine		
				ate:	6/10/2022		
Sample Details							
Sample ID		22-1326-S05	22-1326-S0	06	22-1326-S07	22-1326-S08	
Client Sample ID Date Sampled		BH-05 Sa4	BH-05 Sa	a5	BH-05 Sa6A	BH-05 Sa6B	
Other Test Results							
Description	Method			esul			Limits
Water Content (%)	ASTM D2216	37		43	26	20	
Date Tested		5/26/2022 Karen Jackson	5/26/202 Karen Jackso		5/26/2022 Karen Jackson	5/26/2022 Karen Jackson	
Tested By Group Code	ASTM D2487	Karen Jackson		CH	Karen Jackson	Karen Jackson	
Group Name	ACTIN DEFOR		Fat cla				
Material Proportions Estimated			Ye				
Gravel (%)				0			
Sand (%)				0			
Fines (%)			10	00			
Tested By	ASTM D2487		Cindy Zickefoos				
Liquid Limit	ASTM D4318			54			
Plastic Limit				25			
Plasticity Index			2 We	29 /ot			
Preparation Method Oversize Removed By			VV Hand during mixing on glass pl				
Liquid Limit Apparatus			Mechanic				
Grooving Tool			Plast				
Rolling			Han				
Tested By			Cindy Zickefoos				
Date Tested			6/7/202				
Percent Gravel	LMA (Internal Metho	d)				0	
Percent Sand						64	
Percent Fines (Silt/Clay)						36	
Group Symbol						SM	
Group Name Tested By						Silty sand Frank Walters	
Tested By						Frank wallers	

Client:	CRW Engineering Grou 3940 Arctic Blvd., Ste. 3 Anchorage, AK, 99503	ıp, LLC	Project Code: 22054 CC: CRW Maria Kampsen	6 The	eport No: ASM:22- sue No: 1 results contained below pertain only to aduced, except in full, without the prior	the items tested below. This repo	
Project:	Quinhagak St			Re	viewed By: Maria E Kan	Harpsen	
	10155.00			Titl Da	e: Senior Engir		
Samp	le Details			=			
Sample Client S Date Sa	e ID Sample ID ampled		22-1327-S01 BH-06 Sa1	22-1327-S0 BH-06 Sa		22-1327-S04 BH-06 Sa4A	
Other	Test Results						
Descrip		Method			sults	-	Limits
	ontent (%)	ASTM D2216	4 5/26/2022	2 5/26/202		20 5/26/2022	
Date Te Tested E			5/26/2022 Karen Jackson	5/26/202		5/26/2022 Karen Jackson	
Group C	· ·	ASTM D2487	GW-GM	Raieli Jacksu	CL	Ratell Jackson	
Group C			ell-graded gravel with silt and sand		Lean clay		
•	g Limits Estimated		Yes		Ecall day		
	Proportions Estimated		100		Yes		
Gravel (63		0		
Sand (%	,		32		0		
Fines (%			5		100		
Tested E		ASTM D2487	Frank Walters		Cindy Zickefoose		
Method	<i></i>	ASTM D6913	A				
	tion Method		Oven Dry				
•	ite Sieving?		Yes				
	ing Sieve(s)		No. 4				
Cu		ASTM D2487	49.51				
Cc			1.47				
Liquid Li	mit	ASTM D4318			46		
Plastic L					23		
Plasticity					23		
	tion Method				Wet		
	e Removed By				Hand during mixing on glass plate		
	mit Apparatus				Mechanical		
Grooving					Plastic		
Rolling	5				Hand		
Tested E	3v				Cindy Zickefoose		
Date Te					6/7/2022		

Soil Classification of Fines (-#200) in LMAs Assumed Unless Verified by Additional Testing

ATL

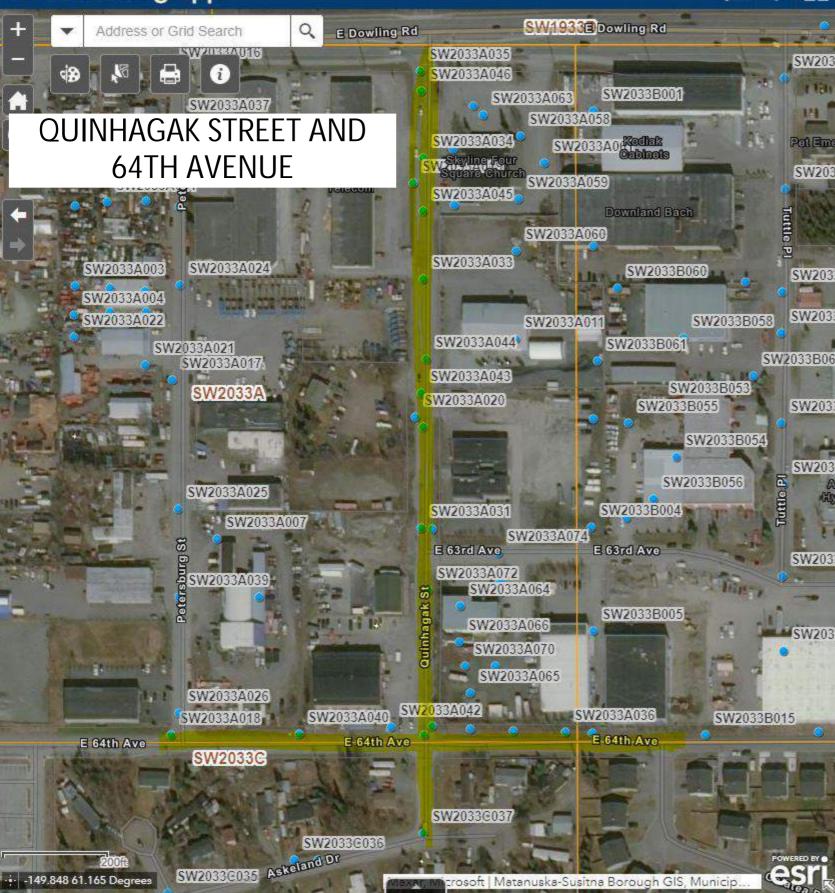
Mate	erial Test F	Report		Re	eport No: ASM:22- sue No: 1	1327	
Client:	CRW Engineering Group 3940 Arctic Blvd., Ste. 3 Anchorage, AK, 99503	p, LLC	Project Code: 22054 CC: CRW Maria Kampsen	6 The r repro	esults contained below pertain only to duced, except in full, without the prior	the items tested below. This rep	port should not be ab or the agency.
Project:	Quinhagak St				Mar	Etapser	
	10155.00			Rev Title Dat	-		
Samp	le Details						
Sample	e ID Sample ID		22-1327-S05 BH-06 Sa4B	22-1327-S06 BH-06 Sat			
Other	Test Results						
Descrip		Method			sults		Limits
Water C Date Te	Content (%) sted	ASTM D2216	22 5/26/2022	23 5/26/2022			
Tested E			Karen Jackson	Karen Jacksor			
Percent	Gravel	LMA (Internal Meth	nod)) 0		
Percent				72 28			
Group S	Fines (Silt/Clay)			SM			
Group N				Silty sand			
Tested E				Frank Walters	Frank Walters		
Comn							
Soil Clas	sification of Fines (-#200)) in LMAs Assume	ed Unless Verified by A	dditional Testing	I		

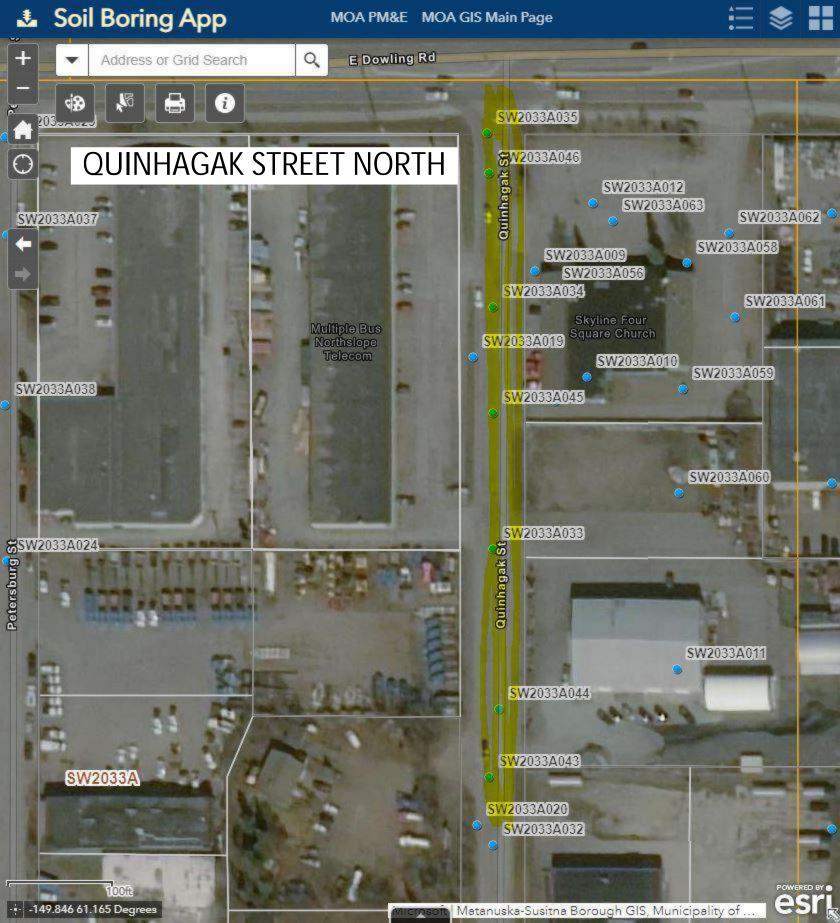
ATL						Alas	ka Testlab - Anchorage 4040 B Street, Suite 102 Anchorage, AK 99503 Phone: 907-205-1987 Fax: 907-782-4409 info@alaskatestlab.com
Material Tes	st Report		Γ	Rep	oort No: MA ue No: 1	T:22-1327-S01	
Client: CRW Engineering 3940 Arctic Blvd., Anchorage, AK, 99 Project: Quinhagak St	Group, LLC Project Ste. 300 C	ct Code: 220546 C: CRW Maria Kampsen	5	The res	ults contained below perta	ain only to the items tested below It the prior written approval of Ala Man Harpse	
10155.00				Revie Title: Date		r Engineer	
Sample Details					Particle Si	ize Distributi	on
Sample ID Client Sample ID	22-1327-S01 BH-06 Sa1				Method: Drying By: Date Tested: Tested By:	ASTM D6913 Oven 6/6/2022 Frank Walters	
					Sieve Size 3in 2in 1½in 1in ¾in	% Passing 100 100 98 81 72	
Other Test Result	S				1∕₂in 3/8in	57 50	
Description Water Content (%) Date Tested Tested By Group Code Group Name Atterberg Limits Estimate Gravel (%) Sand (%) Fines (%)	ASTM D2487 Well-graded gravel with si ed ASTM D2487	Yes 63 32 5	Limits		No.4 No.10 No.20 No.40 No.60 No.100 No.200	36.8 29 21 14 9 7 5	
Tested By Date Tested	Fra	ank Walters 6/6/2022					
Method Preparation Method Composite Sieving?	ASTM D6913	A Oven Dry Yes			-		
Separating Sieve(s) Cu	ASTM D2487	No. 4 49.51			Chart		
Cc Date Tested		1.47 6/6/2022			100 60	Diameter 20 6 2 mm	600 200 100 50 μm
					90 (sse 10 60 60 60 60 50 40 80 50 40 80 80 70 60 90 80 80 80 80 80 80 80 80 80 80 80 80 80	1" 1/2" #4 #10	#20 #40 #100

Sample Size Does Not Meet ASTM Requirements Soil Classification of Fines (-#200) in Sieve Analyses Assumed Unless Verified by Additional Testing No Plasticity Index Test Performed

Appendix C

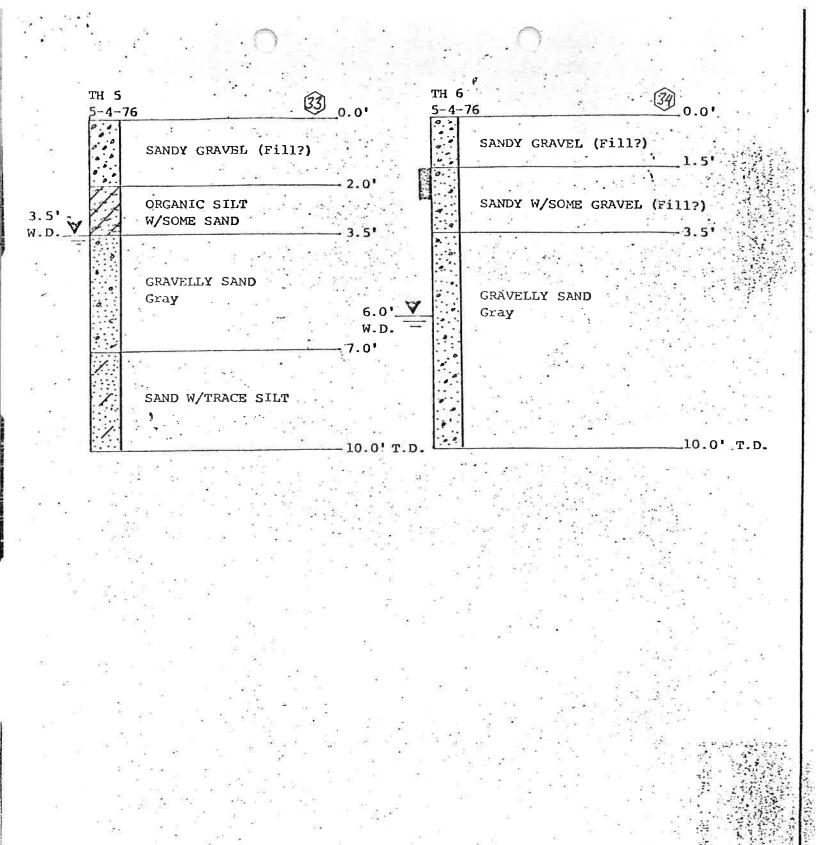
Historical Borehole and Test Pit Logs


Included in this section:


- 1) Historical borehole/test pit logs for Quinhagak Street with map
- 2) Historical borehole/test pit logs for 64th Avenue with map

Soil Boring App

MOA PM&E MOA GIS Main Page


≡ 📚 👪

TH 8 TH 7 0.0 5-4-76 0.0 5-4-76 0.0 ORGANIC MATERIAL 00 SANDY GRAVEL (Fill?) 1.0 0.0 2.0' SILTY SAND - ---3.0 ₩.D.♥ Brown SAND AND ORGANICS -4. 2.5 3.0 GRAVELLY SAND GRAVELLY SAND W/TRACE SILT. W/TRACE SILT 5-0" 5.0' T.D. see quad. B This quizt SANDY GRAVEL Л Gray .7.0 • 55 - : SILT W/SOME SAND TRACE CLAY Gray 11.5 W.D ¥ .11.5 D SILTY SAND W/SOME GRAVEL Gray 15.0' T.D. F.B. WN PLA • Log of Test Holes GRID: 2033 George Jenson WJL KD: PROJ.NO. 651133 Anchorage, Alaska 5-6-76 ATE: : HAM CONSULTANTS, INC. DWG NQ CALE: 1"-2" > nc

LOG OF TEST BORING Date Begun 6-25-81 10 Hole No. Date Completed - 25-81 Rig No. CME 55 truck 10 R & MCONSULTANTS, INC. (46) Sheet Total Depth 10 GROUND WATER TABLE kSt. 70'S. 01 hac W.D = While Drilling VIN A B = After Boring Location _____ Method Used 6" Solid File Aneca Depth in Ft. Field Party Grinden, Sattler Time me Samuel Geologist Date Weather SUMNY, Near Nocation Diagram Sampling DESCRIPTION Soil type, color, texture, Dowline Content estimated particle size, Feet parking ion Sampled 10' 10 Me sampler driving notes, ø Graph 0 No. Consistency Blow Count depths circulation lost, Frozen lice Ē Moisture notes on drilling ease, Quinhace Recovery Sample bits used, etc. Depth % Ice Locat Vegetation: None. Soil T, °F San Collar Elevation Reference 0 SUPP.1 4 N ZW dean 9 0 0 airl . 4 Wall . 2 0 Gravell Sand З M 0 4 \$ 5 W-43 M Srowh VELVEV Ø 10. 1.5 10 histest 5.5-10.0 an onteri 0 God avar color, 8 42 W-J 0 0 T 2 3 4 5 6 7 8 9 0

DWN: PLA			F.B.
CKD: WJL	I HAN M	Log of Test Holes George Jenson	GRID: 2033
DATE: 5-6-76		S 1 (2) 10 ¹ 1	PROJ.NO. 651133
SCALE: 1"=3'	R&M CONBULTANTS, INC.	Anchorage, Alaska	DWG.NO. B-05

Test Hole #9

WO #A18638 Logged By: O.M. Hatch Date: Sept. 28, 1978

Depth in Feet	(19)
From To	Soil Description
0.0' - 3.0'	F-2, brown <u>Silty Gravelly Sand</u> SM, damp, medium density, particles to 6".
3.0' - 8.0'	F-4, brown to grey <u>Sandy</u> <u>Silt</u> , ML with <u>Silty Sand</u> , SM, layering, damp to saturated, stiff, particles to 2", Group E.
8.0' - 14.0'	F-2, grey <u>Silty Sand</u> , SM, with clayey silt lenses, saturated, medium density, Group B.
14.0' - 16.5'	F-1/F-3, grey very <u>Silty Sandy Gravel</u> , GM, damp, medium to high density, damp, particles to 2", Group C.
Bottom of Test Hole	: 16.5'

Frost Line: None Observed

Free Water Level:

1.

While Drilling 5.0'

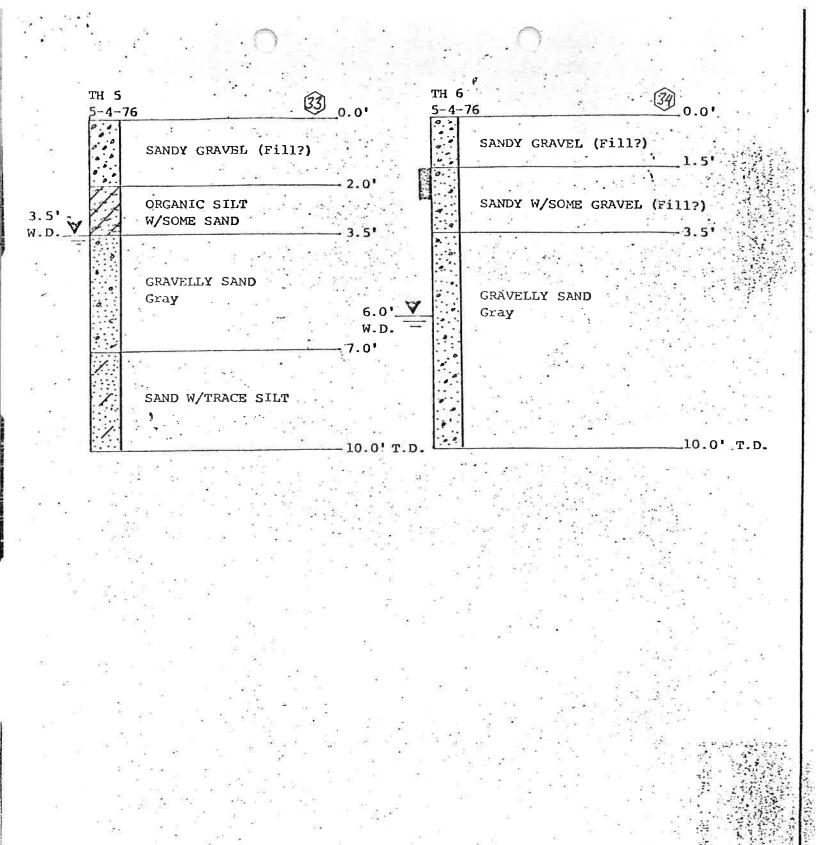
Sample	e Depth	Blows/6"	<u>M%</u>	Type of Sample	Dry Strength	Group	Unified	°F
1	5.0'- 7.0'	12/12/17/22	18.6	SP	H a	Е	SM/ML	51
2	10.0'-12.0'	16/17/18/19	20.1	SP	N-L	В	CL/ML	50
3	15.0'-16.5'	23/56/54	9.4	SP	L	С	GM	

Remarks:

Type of Sample, G=Grab, SP = Standard Penetration, U = Undisturbed.

2. Dry Strength, N=None, L=Low, M=Medium, H=High.

3. Group refers to similar material, this study only.


4. General Information, see Sheet 1.

5. Frost and Textural Classification, see Sheet 2.

6. Unified Classification, see Sheet 3.

1

LOG OF TEST BORING Datê Begun <u>6 - 2 5 - 8</u>] Hale No. Date Campleted 6-25-91 Rig No. CME 55 Anic 110 (45) Sheet. Rţ Tatal Depth M CONSULTANTS, INC. Project Na GROUND WATER TABLE Project Nome Locotion Winhagnk St. 320 Senth of & on Dowling W.D = While Drilling A B = After Boring Method Used 6" Solid Flite Anger Depth in Ft. Field Party Grinder, Sattler Ð Time IV Gealagist unhur Weather Sunny Dote Lacotion Diagrom: 4 Sompling DESCRIPTION Sail type, calar, texture, estimated porticle size, powlingst. Content Feet Sampled Me sampler driving nates, Graph ¢. No. Blow Count Consistency avinhanak depths circulation lost, Frozen Depth in nates an drilling ease, bits used, etc. Moisture Recovery 54. Sample % Ice Locati Soil Sam T, °F Vegetotion: None **Collor Elevotion** Reference 0 Smpl. 1 50 . h 0 GM norin 0-.0) voum arad -1 WAVES Repples, uban salan 3 0 5 SMPI. 0 W-40 2 rours SILA Guess 10 6 S 0 0 8 ٥ Q 0 U V 0 END 2 3 4 5 6 7 8 9 n

DWN: PLA			F.B.
CKD: WJL	I HAN M	Log of Test Holes George Jenson	GRID: 2033
DATE: 5-6-76		S 1 (2) 10 ¹ 1	PROJ.NO. 651133
SCALE: 1"=3'	R&M CONBULTANTS, INC.	Anchorage, Alaska	DWG.NO. B-05

LOG OF TEST BORING Date Begun 6-26-81 Date Completed 6-25-8 Hole Na. Rig No. CME 55 truck 10 R & MCONSULTANTS, INC. (44 Sheet_ Total Depthia GROUND WATER TABLE Praject Name Lacation _ Vum hace W.D = While Drilling A B.= After Boring Methad Used 6" Soli Hethad Used 6" Solid Alite Anger Field Party OVINDER Sattler Depth in Ft. 100 Time Gealogist Sannell Weather Sunny CLEAR Date Ageatian Diagram C Dowlin Sampling DESCRIPTION Sail type, color, texture, estimated particle size, 010. Content in Feet 9 Met Location Sampled sampler driving notes, 0. Graph Consistency No. Blow Count Frozen depths circulation lost, 8 Moisture notes an drilling eose, Recovery Sample Depth bits used, etc. % Ice Soil Bamr т, °F Vegetatian: Vone Collar Elevation Reference 0 ŵ 40 grave srave Drown Ć trace $\langle \rangle$ 2 3 5 5.0-10.0 grave 6 cb TWL 8 12 \$ ٩ 0 **海門 間部** in the second Ser. 10 END -L 12 2 3 4 5 6 7 8 9 0

LOG OF TEST BORING Date Begun 6-25-81 Hale No.___ Date Completed 6-25-81 Rig No CME 55 NULKILO R & MCONSULTANTS, INC. (43 Sheet _ Total Depth 🚌 GROUND WATER TABLE Project Nome Locotion Quinhaga W.D = While Drilling A B = After Boring FIHO Ances Depth in Ft. Method Used south Daynwell Time N Field Part & Kindy Geologist Date Weather <u>JUGUy</u> G_ Adcation Diagram Sampling DESCRIPTION Dowling Soil type, color, texture, estimated particle size, Content Sampled Depth in Feet 020 Me sampler driving notes, depths circulation lost, <u>م</u> Graph Count No. Consistency Frozen Moisture notes on drilling eose, bits used, etc. Recovery Sample % Ice Blow Locat Soil Vegetation: Grasses, Sam T, °F rsetar Collar Elevation Reference 0 M 40 Smol. Gren-brown Clan 2 Some silt and .0 MICS Dea clumps 2 3 5 a-CH YN-SMAI 2 VACE 6-10.0 6 112 amovh TYNYEI 7 6 8 q 0 ENT 2 3 4 5 6 7 8 9 0

Test Hole #8

Table A

WO #A18638 Logged By: O.M. Hatch Date: Sept. 29, 1978

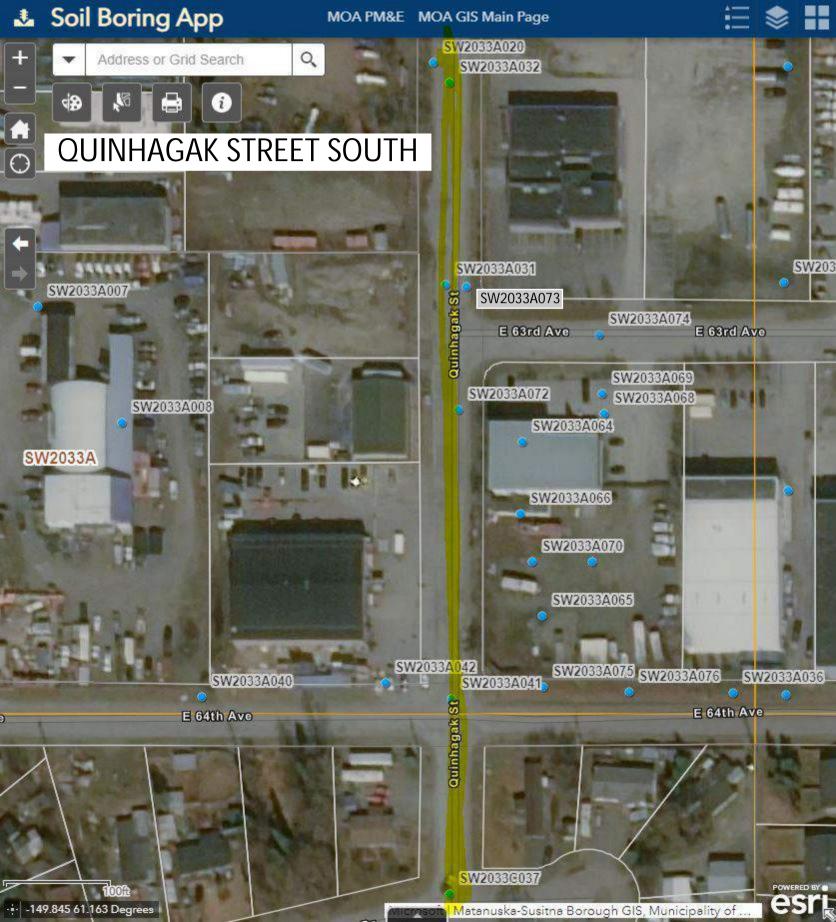
Depth in Feet	20
From To	Soil Description
0.0' - 3.0'	Brown Peat, Pt, damp, soft.
3.0' - 13.0'	NFS/F-4, grey Gravelly Sand, SP, with Sandy Silt, ML, layering, saturated, particles to 2".
	F-4, grey <u>Clayey</u> <u>Silt</u> , CL/ML, damp, stiff, PL+, Group D.
Bottom of Test Hole:	16.5'
Frost Line:	None Observed
Free Water Level:	While Drilling 4.0'

		رو		-	
After	3	Days	2.	0	l

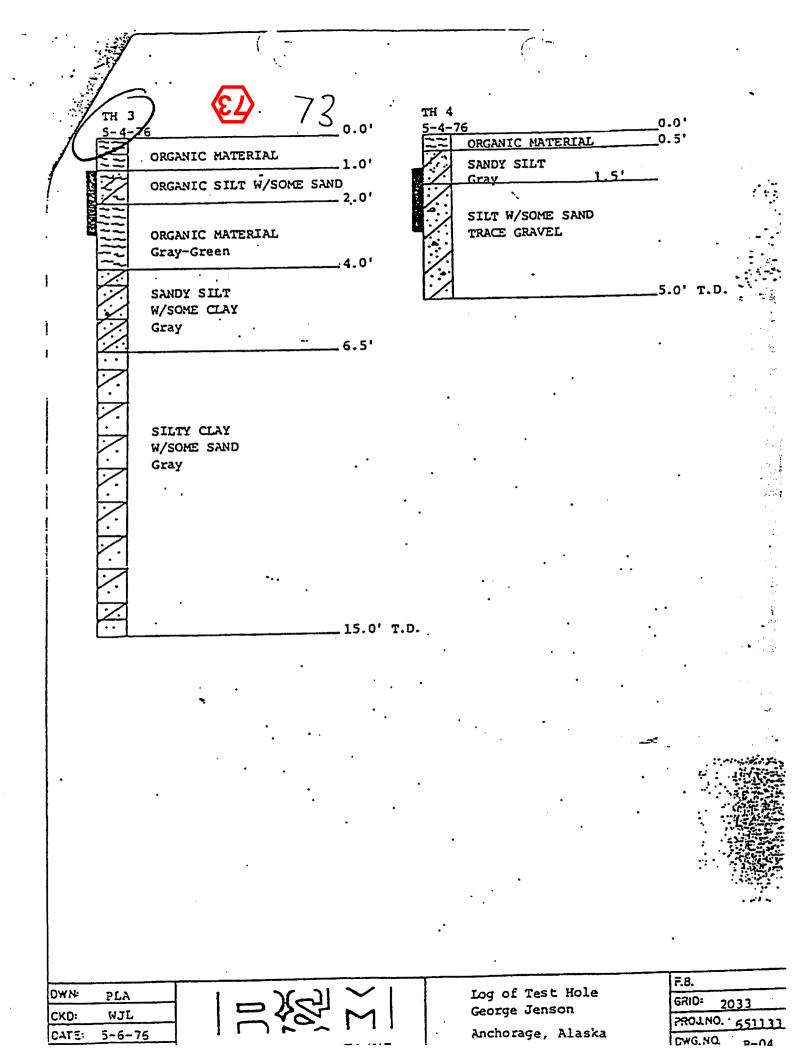
Sample	Depth	Blows/6"	<u>M</u> %	Type of Sample	Dry Strength	Group	Unified	Temp
1	5.0'- 6.5'	5/9/16	17.2	SP	L	-	SP/ML	⁵⁰ 42
2	10.0'-11.5'	28/31/11	15.0	SP	N	-	SP/ML	42
3	15.0'-16.5'	5/7/6	41.0	SP	М	D	CL/ML	42

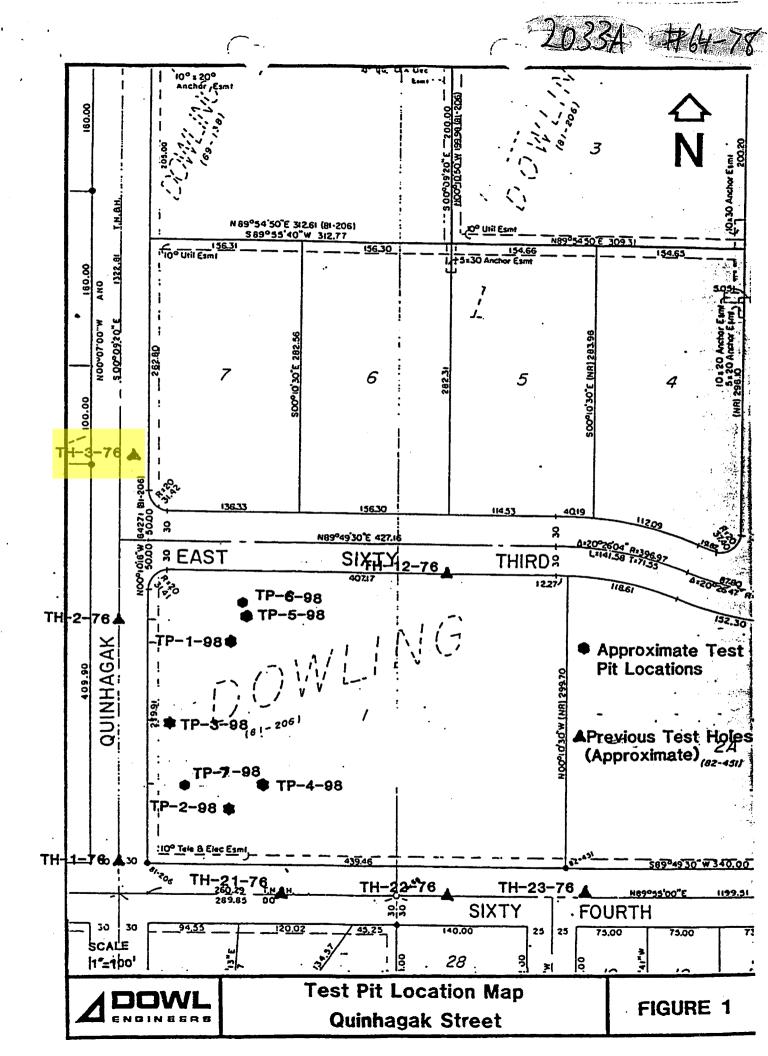
Remarks:

1. Type of Sample, G=Grab, SP = Standard Penetration, U = Undisturbed.

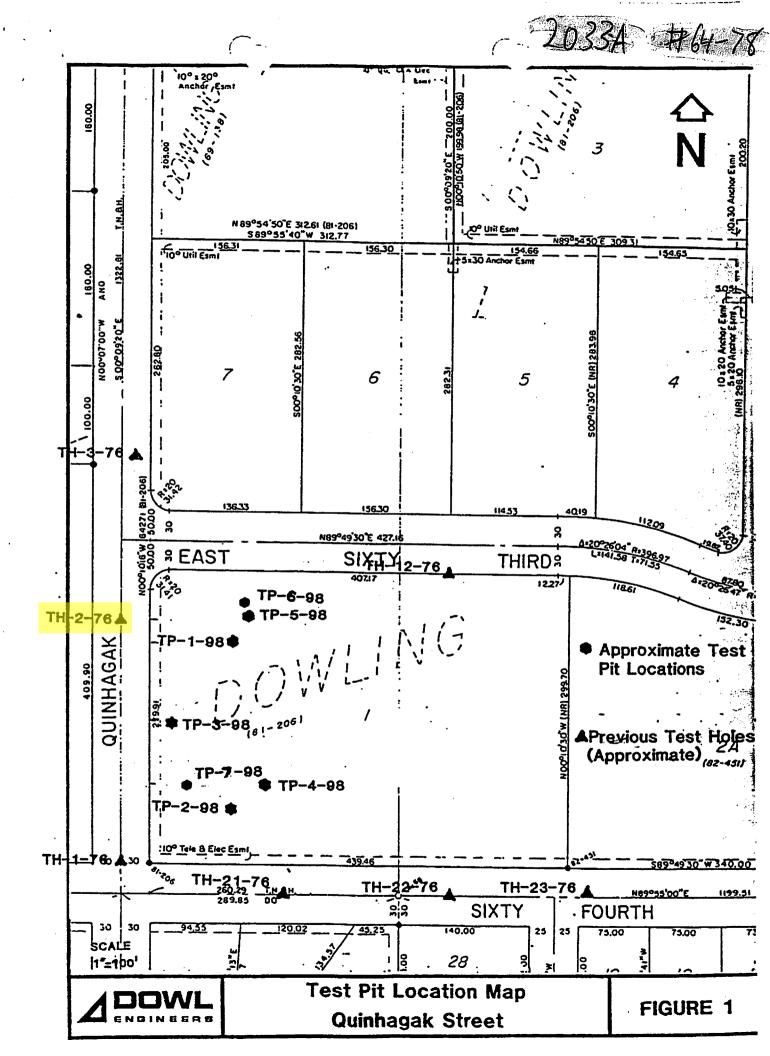

2. Dry Strength, N=None, L=Low, M=Medium, H=High.

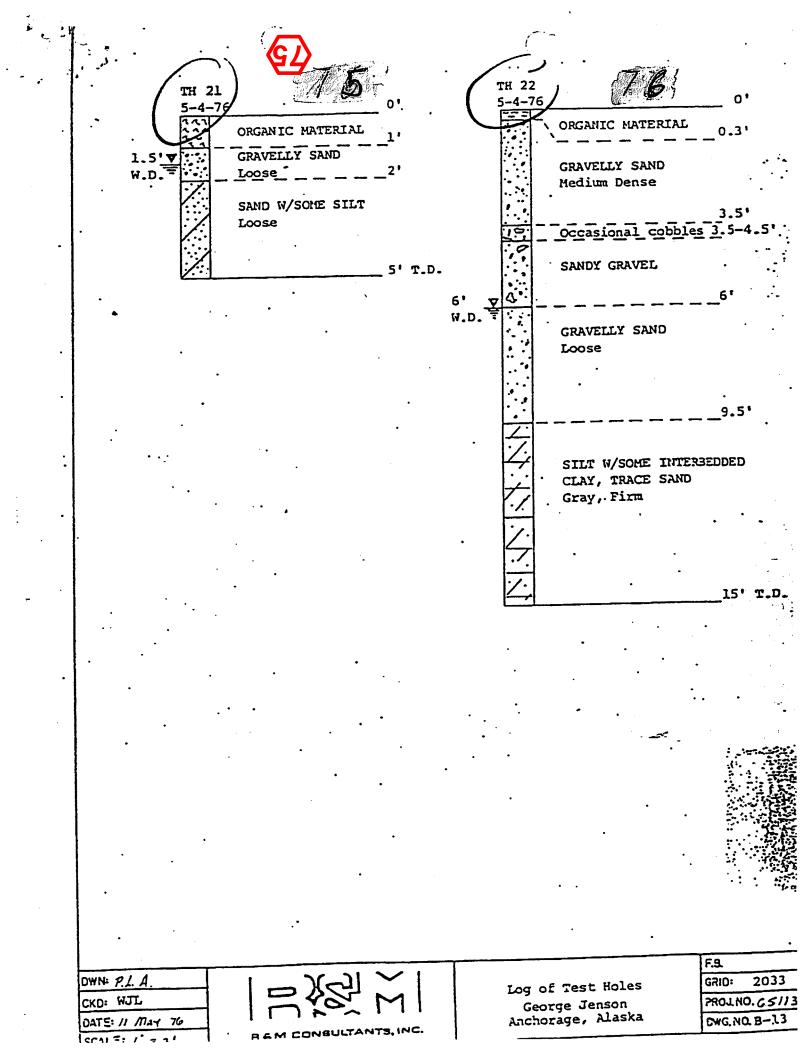
Group refers to similar material, this study only.
 General Information, see Sheet 1.

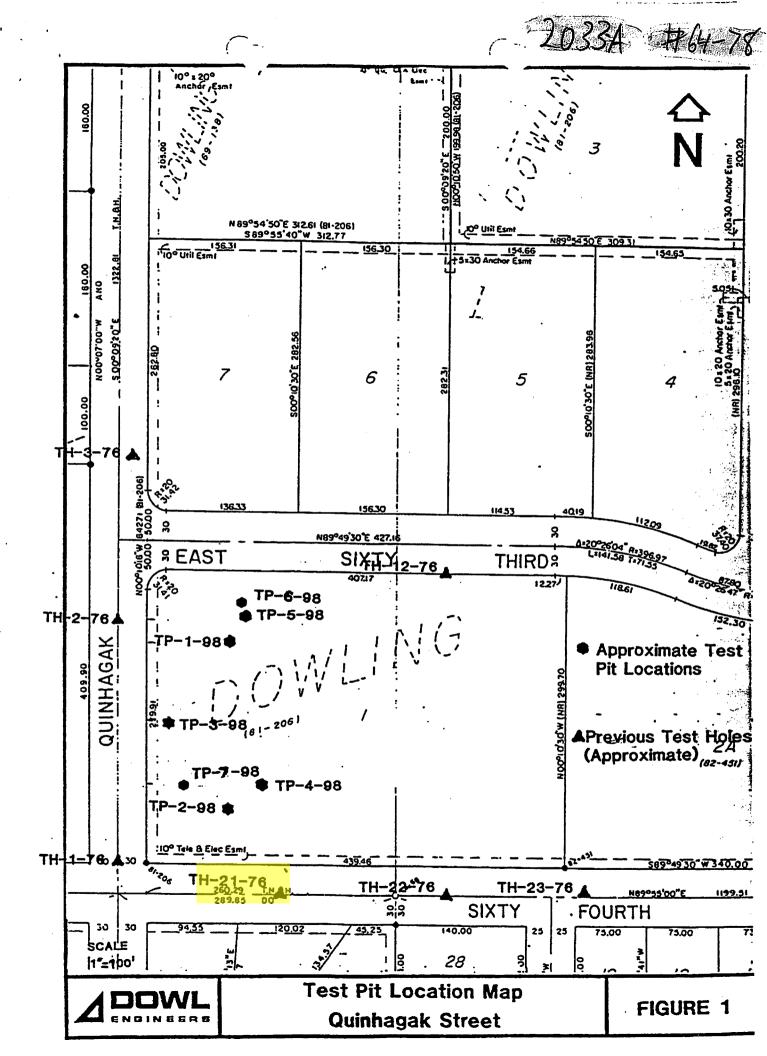

5. Frost and Textural Classification, see Sheet 2.

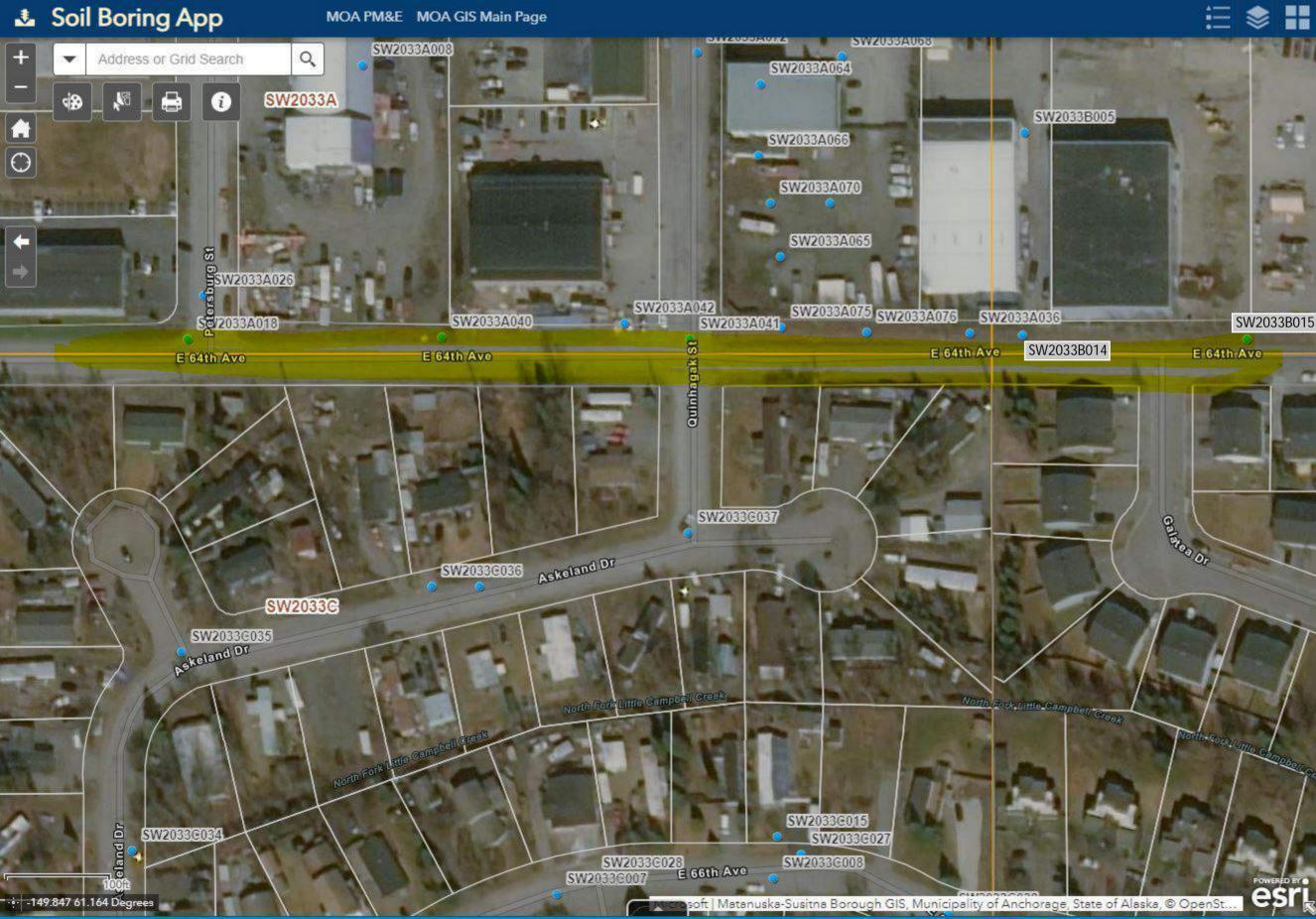

6. Unified Classification, see Sheet 3.

TH 4 тн З 5-4-76 5-4-76 0.0' 0.0' 0.5 ORGANIC MATERIAL ORGANIC MATERIAL 1.0' SANDY SILT ORGANIC SILT W/SOME SAND Gray ____ 2.0' 5 °8 ° SILT W/SOME SAND ORGANIC MATERIAL TRACE GRAVEL Gray-Green 4.0' SANDY SILT 5.0' W/SOME CLAY Gray 6.5 SILTY CLAY W/SOME SAND Gray 15.0' T.D. DWN: F.8. PLA Log of Test Hole CKD: GRID: WJL George Jenson 2033 PROJ.NO. - 651133 DATE: 5-6-76 Anchorage, Alaska RAM CONSULTANTS, INC. SCALE: 1"=3" DWG.NQ. R-04


TH 4 тн З 5-4-76 5-4-76 0.0' 0.0' 0.5 ORGANIC MATERIAL ORGANIC MATERIAL 1.0' SANDY SILT ORGANIC SILT W/SOME SAND Gray ____ 2.0' 5 °8 ° SILT W/SOME SAND ORGANIC MATERIAL TRACE GRAVEL Gray-Green 4.0' SANDY SILT 5.0' W/SOME CLAY Gray 6.5 SILTY CLAY W/SOME SAND Gray 15.0' T.D. DWN: F.8. PLA Log of Test Hole CKD: GRID: WJL George Jenson 2033 PROJ.NO. - 651133 DATE: 5-6-76 Anchorage, Alaska RAM CONSULTANTS, INC. SCALE: 1"=3" DWG.NQ. R-04


TH 2 0.σ' ORGANIC MATERIAL 1.0' SILTY SAND SILTY CLAY W/ Brown TRACE SAND Trace Gravel at 4' Gray 5.0* 6.0' SILTY SAND 7.0' Brown SILTY CLAY Gray, Very Soft ٠. . 15.0' T.D. WN PLA F.B. Log of Test Holes GRID: 2033 KD: WJL George Jenson PROLNO. 651133 5-5-75 :ETK Anchorage, Alaska


~ ... -


LOG OF TEST BORING Date Begun 6-25-81 :6 Date Begun 0-0-0 Date Campleted 6-25-81 Rig No CME 55-trunctz110 R & MCONSULTANTS, INC. Hole Na. 42 Sheet 🛓 Totol Depth : GROUND WATER TABLE Project Name and 64th Ave. Lacation annas W.D.= While Drilling A B.= After Boring Method Used 611 Enger Depth in Ft. one Field Party Ormdon. Time TDC manue Geologist Date Weather Logation Diogram: Sampling DESCRIPTION Soil type, calor, texture, estimoted particle size, Dowling Quinhagaks Content Feet Sampled Me sampler driving notes, 0. Graph Count Consistency å depths circulation lost, hole 6 Frozen Ξ. Moisture notes an drilling eose, bits used, etc. Recovery Sample Depth ce Blow Locat Soil Samp T, °F Vegetotian: % **Collar Elevation** Reference 0 M -40 SM Clan 01. shey own. 5.0 Samic 00 OL 5 N >m clay brn. anic 10 0 mal - 1 to OL 8 9 0 END 2 3 4 5 6 7 \mathbf{x} 8 9 0

LOG OF TEST BORING Date Begun <u>6-25-81</u> Hole No. 5 Date Completed 6-25-81 Rig No. CME 55 truck 110 GD Sheet ______ of ____ Total Depth __/O ___ R & MCONSULTANTS, INC. Project No ____ GROUND WATER TABLE Project Name. Location Thtersection Quinhagak + 64th Ane. W.D.= While Drilling A B.= After Boring Method Used 6" Solid Flay Anger Field Party Grindu, Un Depth in Ft. Geologist Bannwell nx Time Weather Cloudy, coo, Date Accation Diagram: Sampling DESCRIPTION Quin Soil type, color, texture, estimated particle size, Feet Content ion Sampled Me sampler driving notes, Sample No. Blow Count Graph Moisture Consistency 0 depths circulation last, Frozen 6412 Ë notes on drilling ease, bits used, etc. Recovery Depth % Ice Locati Soil Sam. T, °F Vegetotion: Brown-quey class **Collar Elevation** M Smpl. 1 w orne 0-0-5.0 Vab-cb 3 2 M Smpl. 2 0055166 Grev W 5.0-10.0' ob-ch VULE q 0 ENT 2 3 5 6 7 8 9 0

[1]	,	
8. 7	LOG OF TEST BORING	
Date Begun 5/21/81)	Hole No 22
Date Completed 5/21/81		Sheet of 37
	۶ T	Total DepthO
Project No/5/07/	& MCONSULTANTS, INC.	
Project Name SHELIKOF RID		GROUND WATER TABLE
Location See diagram		W.D = While Drilling A B = After Boring
Method Used STD. PENETRATIO	N	Depth in Ft. 4.5' WD 2.5 AB
Field Party L.WALTER+ M. KA		
Weather	Geologist <u>E. OLSON</u>	110 m 1120 FM
		Date 5/21/81 5/21/81
se phantaint Metil	DESCRIPTION Il type, color, texture, imated particle size, mpler driving notes, pths circulation lost, tes on drifting ease,	TEST HOLE #22
ample low (cartic cart	s used, etc. ASKELAND D	R/VE
amperation Sample N Blow Cou Location Recovery Pepth in % lce C Frozer Soil Gra Soil Gra Consister Consister	Vegetation: NONE	
	Collar Elevation	Reference
GI D D OF O MD		
5 1 0 0 0 0 M D	SAMPLE # 1 . SANDY GRAD	IEL W/ TRACE SILT.
	0-0'-1.0' BROWN, GVL.	SUBROUNDED, < 1/2"
	IMT, 1 PB	
	DRILLER NOTES SOF	T DRILLING AT 3!
3 00.0 V V	SAMPLE # 2 SAND WITH S	NUGERIALLINGS.
	4.5'-6.0' BROWN, SAN	DFINE, FROZEN.
MDZ X~VV	L1 MT, 1 PB	
28 5- 12 YM MD		
67, 7		
	SAMPLE#3 SILTY SANDU	1/TR. GRAVEL .
	9.5'-11.0' GRAY. GUL.	
	IMT, 1PB	
8 - / / /	7	
MMD	5UM	MARY: 0.0'- 3.0' SANDY GRAVEL
		3.0'-4.5' PEAT
37000/0/0/		4.5'-11.0': SILTY SAND W
6		TR. GVL
84		
	T.D. @ 11.0.	
2		
3		
4		
5		
7		
8		
5		
(Real		

Free Water Level:

WO #A18638 Logged By: O.M. Hatch Date: Sept. 28, 1978

Depth in Feet	
From To	Soil Description
0.0' - 1.0'	Brown Peat, Pt, damp, stiff.
1.0' - 16.5'	F-4, brown to grey <u>Clayey</u> <u>Silt</u> , CL/ML, slightly sandy to 8.0', wood mixed to 2.5', damp, stiff, PL+ to PL
	K. Contraction of the second se
Bottom of Test Hole:	16.5'
Frost Line:	None Observed

After 3 days 1.5'

Type of Dry Temp Sample Depth Blows/6" M8 Sample Strength Group Unified °F 1 5.0'- 6.5' 4/7/7 19.5 SP M–H D CL/ML 48 2 10.0'-11.5' 5/7/16 25.7 SP L D CL/ML 44 15.0'-16.5' 11/19/14 3 30.6 SP. L D CL/ML 44

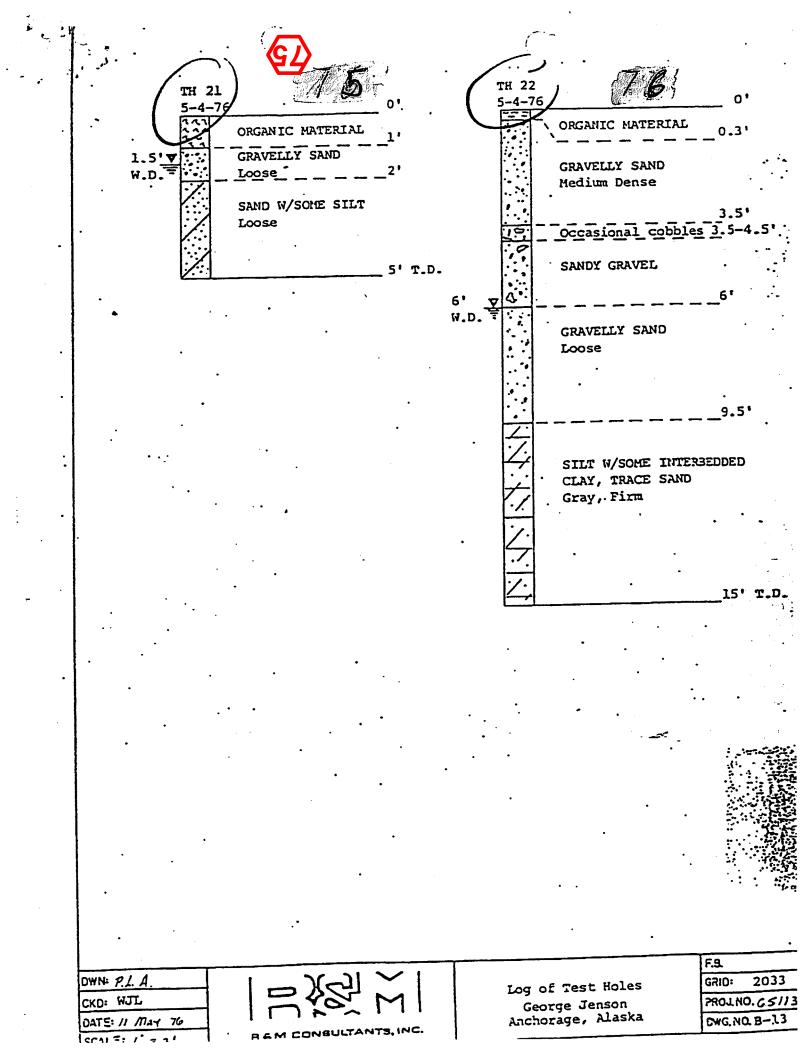
Remarks:

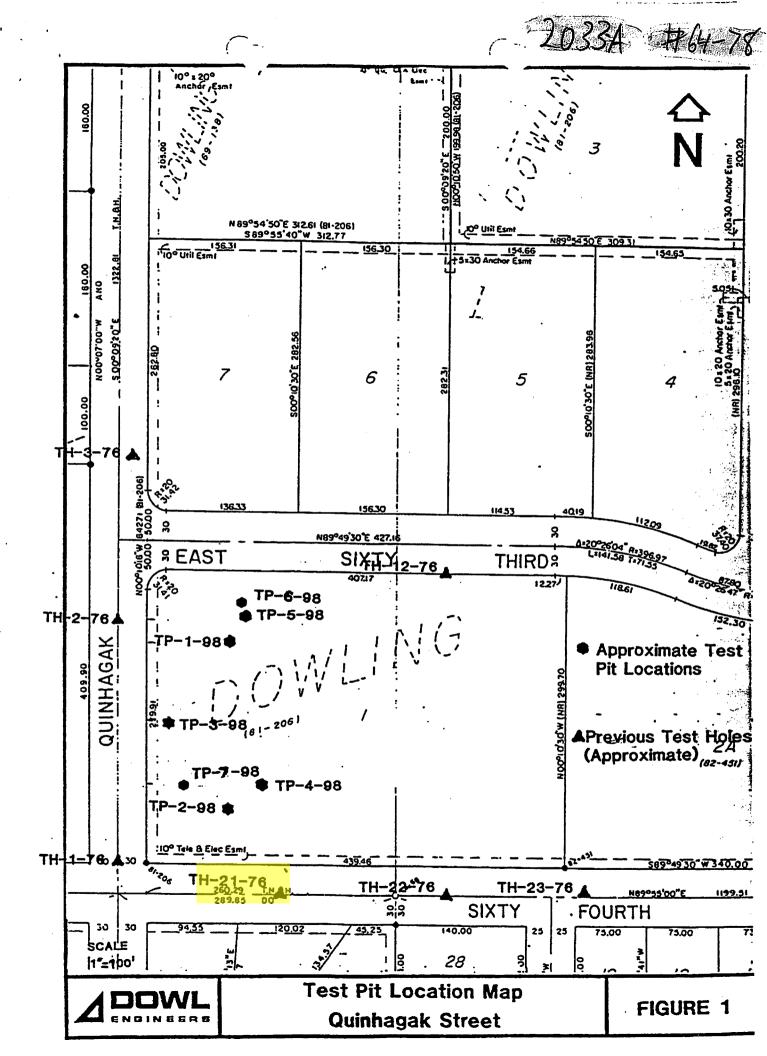
: 1. Type of Sample, G=Grab, SP = Standard Penetration, U = Undisturbed.

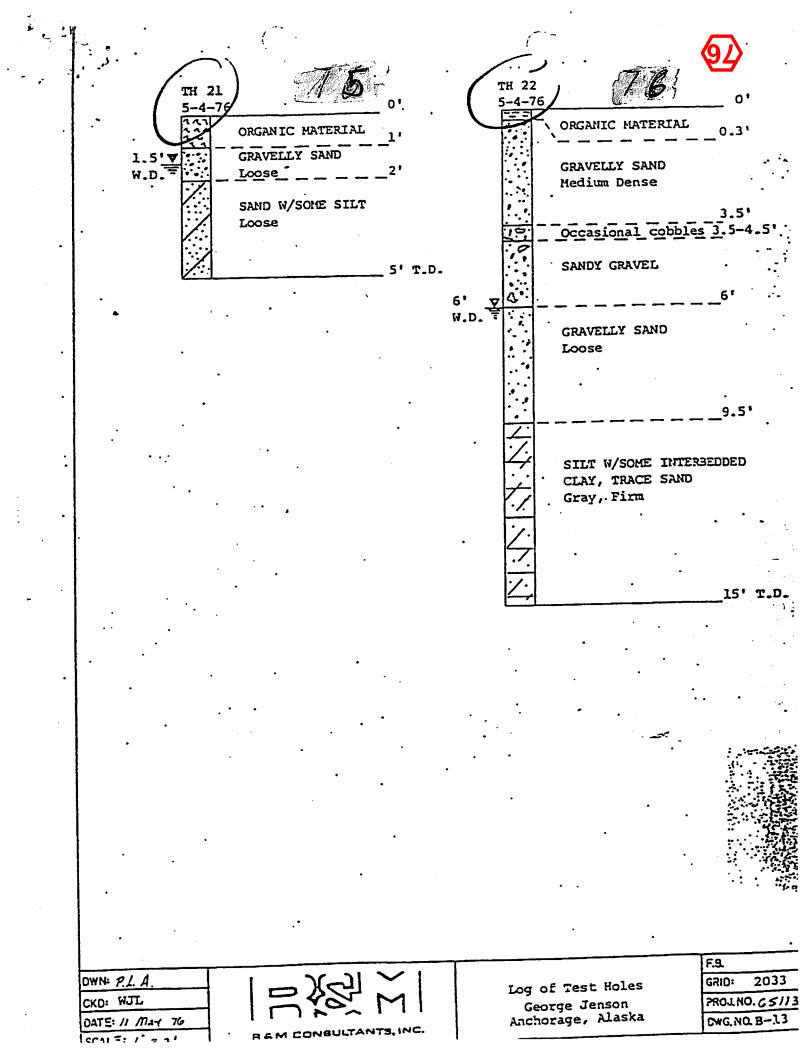
2. Dry Strength, N=None, L=Low, M=Medium, H=High.

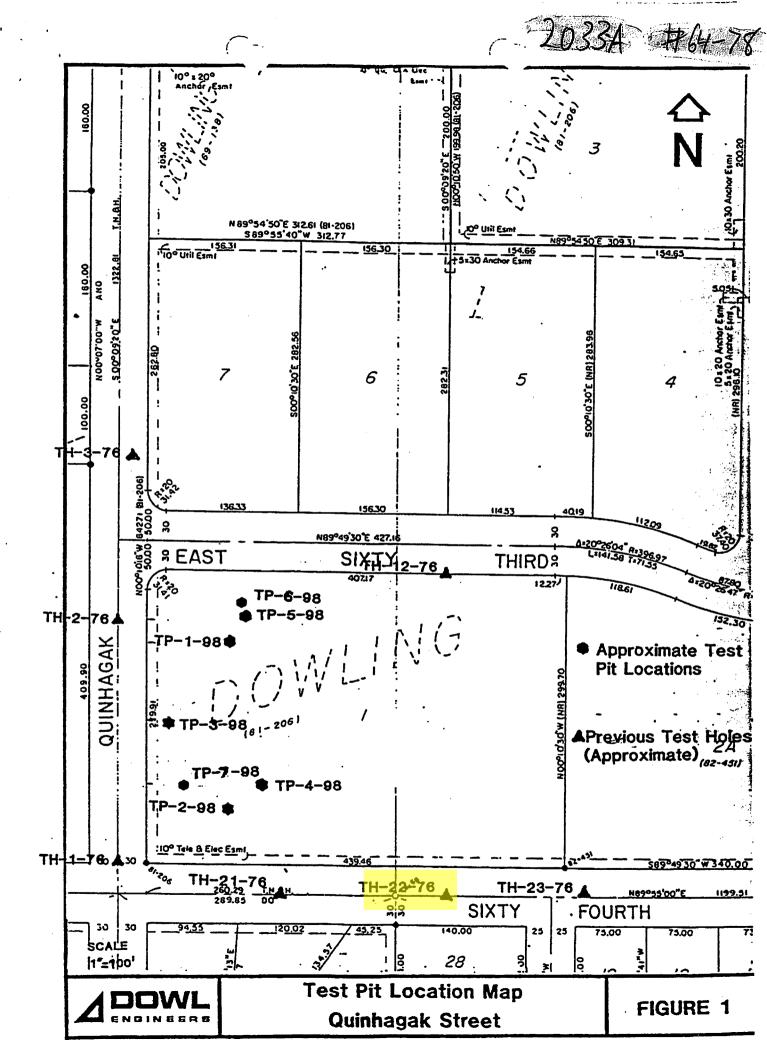
Group refers to similar material, this study only.
 General Information, see Sheet 1.

Seepage at 2.0' while drilling


5. Frost and Textural Classification, see Sheet 2.


6. Unified Classification, see Sheet 3.


Date Begun 6-25-81 Date Completed 6-25-81 Rig No. CME 55 Hundello RE MCONSULTANTS, INC. Hole No._ 40 Sheet = 10 Tatai Depth 🚐 GROUND WATER TABLE Project Name Lacation _64th Lacation _ 64th Ave. Near intsect. W/ Method Used 6" Sulid Flay Anger (W.D) While Drilling (A B) After Boring Veters have Depth in Ft. 8WO AB actibie Field Party Grinder Geologist Dannuell Time 1An Weather Clondy, 100 Date - Petersburg St. Acation Diagram Sampling DESCRIPTION Soil type, color, texture, Content estimated particle size, Count Sampled Feet Met sampler driving notes, 64th 0. Graph 4 Consistency Ň depths circulation lost, Frozen Same .5 Moisture notes on drilling ease, Sample Recovery bits used, etc. Depth Ce Blow -ocat Soil T, Vegetatian: None % **Collar Elevation** Reference We are graved, Smpl. 0. WI NO pear of top 2" 52 5 3 5 2 Grey-brown Sounde SIIt. clan 4 -10 cb. CL Inhomogeneous clay w SILF. q 0 END 2 3 4 5 6 8 0


LOG OF TEST BORING Date Begun 6-25-81 :6 Date Begun 0-0-0 Date Campleted 6-25-81 Rig No CME 55-trunctz110 R & MCONSULTANTS, INC. Hole Na. 42 Sheet 🛓 Totol Depth : GROUND WATER TABLE Project Name and 64th Ave. Lacation annas W.D.= While Drilling A B.= After Boring Method Used 611 Enger Depth in Ft. one Field Party Ormdon. Time TDC manue Geologist Date Weather Logation Diogram: Sampling DESCRIPTION Soil type, calor, texture, estimoted particle size, Dowling Quinhagaks Content Feet Sampled Me sampler driving notes, 0. Graph Count Consistency å depths circulation lost, hole 6 Frozen Ξ. Moisture notes an drilling eose, bits used, etc. Recovery Sample Depth ce Blow Locat Soil Samp T, °F Vegetotian: % **Collar Elevation** Reference 0 M -40 SM Clan 01. shey own. 5.0 Samic 00 OL 5 N >m clay brn. anic 10 0 mal - 1 to OL 8 9 0 END 2 3 4 5 6 7 \mathbf{x} 8 9 0

LOG OF TEST BORING Date Begun <u>6-25-81</u> Hole No. 5 Date Completed 6-25-81 Rig No. CME 55 truck 110 GD Sheet ______ of ____ Total Depth __/O ___ R & MCONSULTANTS, INC. Project No ____ GROUND WATER TABLE Project Name. Location Thtersection Quinhagak + 64th Ane. W.D.= While Drilling A B.= After Boring Method Used 6" Solid Flay Anger Field Party Grindu, Un Depth in Ft. Geologist Bannwell nx Time Weather Cloudy, coo, Date Accation Diagram: Sampling DESCRIPTION Quin Soil type, color, texture, estimated particle size, Feet Content ion Sampled Me sampler driving notes, Sample No. Blow Count Graph Moisture Consistency 0 depths circulation last, Frozen 6412 Ë notes on drilling ease, bits used, etc. Recovery Depth % Ice Locati Soil Sam. T, °F Vegetotion: Brown-quey class **Collar Elevation** M Smpl. 1 w orne 0-0-5.0 Vab-cb 3 2 M Smpl. 2 0055166 Grev W 5.0-10.0' ob-ch VULE q 0 ENT 2 3 5 6 7 8 9 0

TH 21 TH 22 5-4-76 5-4-76 0' 111 ORGANIC MATERIAL 0. . . ORGANIC MATERIAL 1 0." 0.3' 1.5'<u>V</u> W.D. GRAVELLY SAND ٠. Loose GRAVELLY SAND . . Medium Dense . . . SAND W/SOME SILT • • ₽. Loose - E 1 3.5' 10, Occasional cobbles 3.5-4.5' 19 5' T.D. SANDY GRAVEL े •ू२ <u>,</u> 36 5. w.d. 🖞 6' ÷ 2 ÷., GRAVELLY SAND * Loose • ... 9.5 ра 1 г. н. с. 1 г. (*) SILT W/SOME INTERBEDDED CLAY, TRACE SAND Gray, Firm 15' T.D. see quad. B This grid WIN: P.L. A F.B. KO: WJL Log of Test Holes GRID: 203**3** George Jenson DATE: 11 MAY 76 PROJ.NO. 651133 Anchorage, Alaska R&M CONSULTANTS, INC. SCALE: / = 3' OWG. NO. B-13

TH 21 TH 22 5-4-76 5-4-76 0' 111 ORGANIC MATERIAL ORGANIC MATERIAL 1' 0.3' 1.5'V GRAVELLY SAND . . W.D. Loose GRAVELLY SAND 12 Medium Dense SAND W/SOME SILT . • Loose a 🗄 🗉 🤉 10 Occasional cobbles 3.5-4.5 .0 SANDY GRAVEL 51 T.D. See qual. A This gride 2. 6' W.D. 7 1 GRAVELLY SAND Loose ... 9.5 SILT W/SOME INTERBEDDED CLAY, TRACE SAND Gray, Firm 1. 15' T.D. F.B. WIN: P.L.A. KD: WJL Log of Test Holes GRID: 203**3** George Jenson ATE: 11 MAY 76 PROJ.NO. 651133 Anchorage, Alaska SCALE: / = 3' RAM CONSULTANTS, INC. DWG.NO. B-13

т.н. 24 т.н. 23 5-4-76 5-4-76 0.0 0.0' ORGANIC MATERIAL ORGANIC MATERIAL 1.0 0.5' ORGANIC SILT 1.0' 9 SANDY GRAVEL 80 B. 1.5 . SAND W/SOME GRAVEL SILTY SAND 1. * % 2.5' • 33 **-**Tan, Medium Dense 🚧 Ā ÷. SANDY GRAVEL 8 8 5 F 18 1.4 W/ TRACE SILT Trace Gravel at 4.5' ó)±17 31.1 5.0' T.D. 5.0 16 SILT W/ TRACE SAND & CLAY Gray, Medium Dense 9.0 SILTY CLAY Gray, Soft 15.0 [6 F.8. PLA D'#N: GRID: 2033 CKD: WJL Log of Test Holes PROJ.NO. 5-11-76 George Jenson DATE: 651133 1"=3" ASM CONBULTANTS, INC. Anchorage, Alaska DWG. NO. B-14 SCALE:

Appendix D

BERG2 Thermal Analysis Output

Included in this section:

1) Output of BERG thermal modeling analysis

BERG2 Analysis – Limited Subgrade Frost Penetration Analysis – 2" Insulated Section

LOCATION/CLIMATE:

VDos					- 🗆 X
FAIRBANKS	ANCHORAGE	JUNE	AU	Mck	KINLEY PARK
NORTHWAY	DILLINGHAM	POIN	T BARROW	BET	THEL
KOTZEBUE	GULKANA	CENT	RAL	USE	R INPUT
LOCATION NAME ····		ANCHOR	AGE		
THAW N FACTOR · · · ·		· <u>1</u> .7			
FREEZE N FACTOR ···		· 1			
DESIGN AIR THAWIN	IG INDEX °DAYS·····	· 4000			
DESIGN AIR FREEZI	NG INDEX °DAYS	· 3200			
MEAN AIR THAWING	INDEX °DAYS	3500			
MEAN AIR FREEZING	G INDEX °DAYS·····	2300			
MEAN ANNUAL AIR 1	EMP. °F·····	35.3			
AMPL. OF AIR TEMP	P. SINE WAVE·····	24.7			
DESIGN SURFACE TH	AWING INDEX °DAYS	6800			
DESIGN SURFACE FR	REEZING INDEX °DAYS	· 3200			
MEAN SURFACE THAN	ING INDEX °DAYS	- 5950	THAW S	SEASON F	REEZE SEASON
MEAN SURFACE FREE	ZING INDEX °DAYS	- 2300	LEN	NGTH	LENGTH
MEAN ANNUAL SURFA	CE TEMP. °F·····	• 42	AIR 198	3	167
AMPL. OF SURFACE	TEMP. SINE WAVE	• 34	SURF 217	7.2	147.8
	OF DESIRED LOCATION COL KEYS TO MOVE CURSO		ANCE DATA		
		27 - Goldenberger, officiel (197			
1-COLOR F2-SAVE	F3-LOAD F4-DISK	S-SOILS	R-RUN L-N	NEW SCREE	N Q-QUIT

SOIL INPUTS

Layer	Thickness (ft)	Density (pcf)	M.C. (%)	Comment
Asphalt	0.17	138	-	-
Fill (Type II-A)	1.50	130	6.0	-
Insulation	0.17	1.8	-	-
Fill (Type II)	2.00	130	6.0	-
Subgrade	5.00	85	28	-

ANALYSIS RESULTS:

HORAG			IAAT THAW 35		FREZ 32			AYS FREZ DA	
			— 1 —				— 5 —	— 6 —	
		FROZEN % MOIS.					6.0		
		FROZEN DENS.			130.0			85.0	
		LATENT HEAT			1123		1123	3427	
		FROZEN HEAT CAP			26.00		26.00	26.35	
T	С	FROZEN COND.	0.86	1.58	1.58	0.02	1.58	1.01	
H	Y	THAWED % MOIS.	0.0	6.0	6.0	0.0	6.0	28.0	
A	С	THAWED DENS.	138.0	130.0	130.0	1.8	130.0	85.0	
W	L	THAWED HEAT CAP	28.00	29.90	29.90	3.00	29.90	38.25	
	Е	THAWED COND.	⊥ 0.86⊥	1.57	1.57	0.02	1.57	0.65	
		INITIAL THICK	⊤ 0.16⊤	0.16	1.33	0.16	2.00	5.00	
		AMOUNT THAWED	0.16	0.16	1.33	0.16	2.00	1.76	
		CONSOLIDATION							
		FINAL THICK	⊥ 0.16⊥	0.16 $^{\perp}$	1.33⊥	0.16	2.00	5.00	
F	С	LATENT HEAT	⊤ 0 ⊤	1123 🕂	1123 🖵	0	1123 -	3427	
R	Y	FROZEN DENS.				1.8	130.0	85.0	
E	С	FROZEN HEAT CAP	28.00	26.00	26.00	3.00	26.00	26.35	
E	Ľ.	FROZEN COND.	⊥ 0.86⊥	1.58		0.02	1.58	1.01	
Z	Е	INITIAL THICK	⊤ 0.16⊤	0.16	1.33	0.16	2.00	5.00	
E		AMOUNT FROZEN	$^{\perp}$ 0.16 $^{\perp}$	0.16	1.33	0.16	2.00	0.20	

RESULTS

Parameter	Value					
Total Section Thickness	3.83 ft					
Thaw Depth	5.57 ft					
Freeze Depth	4.01 ft					
Subgrade Frost Penetration	0.20 ft					
Subgrade Frost Percent ¹	5.2%					
. Equal to Subgrade Frost Penetration divided by Total Section Thickness						

Quinhagak Street Reconstruction – E. Dowling Road to Askeland Drive MOA PM&E Project #21-13

Traffic Data and Reports

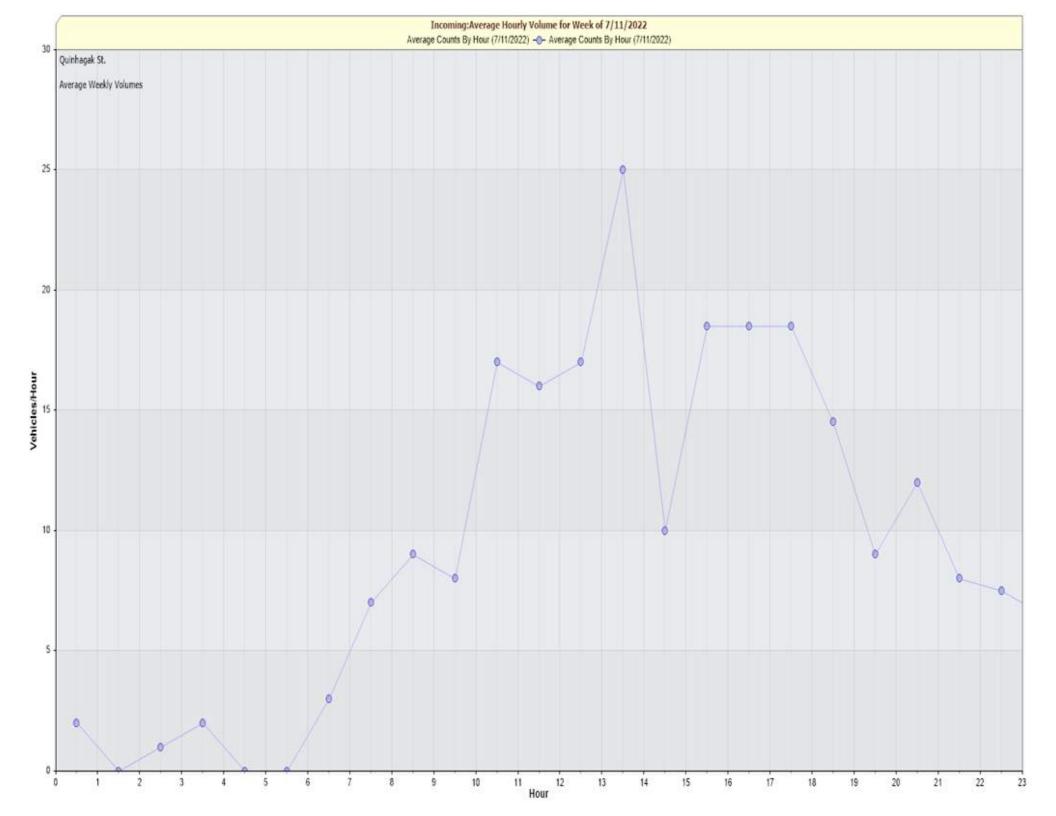
Traffic Engineering	Municipality of Anchorage	Data Section
Location: Dowling and Quint Dister: At int I At		Manual Trail Other
Posted Speed:	Dir: North South	East 🗹 West
Latitude: Longitude:	Study Period: Day(s) Week(s)
(optional) (optional) Site Code (optional): $08091(668/69/70)$	Standard AM 700-900	to Other Time
Equipment Number: Olergi 55	e diagram Standard Midday 1100-100	to Other Time
8 Digit Code (for Manual counters):	Standard PM 400-600	to Other Time
Installer(s) (initials): <u>Je/Kc/Cc</u>	Installed: Date: 8/9/16	ne: <u>3;30</u> see diagram
Weather:	Removed: Date: <u>8/////6</u> Tin	ne: / ; 20 see diagram
Comments (including unusual Roadway or Trail Condition):		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		69 Not to Scale Not to Scale D W L N L N C S S S S S S S S S S S S S

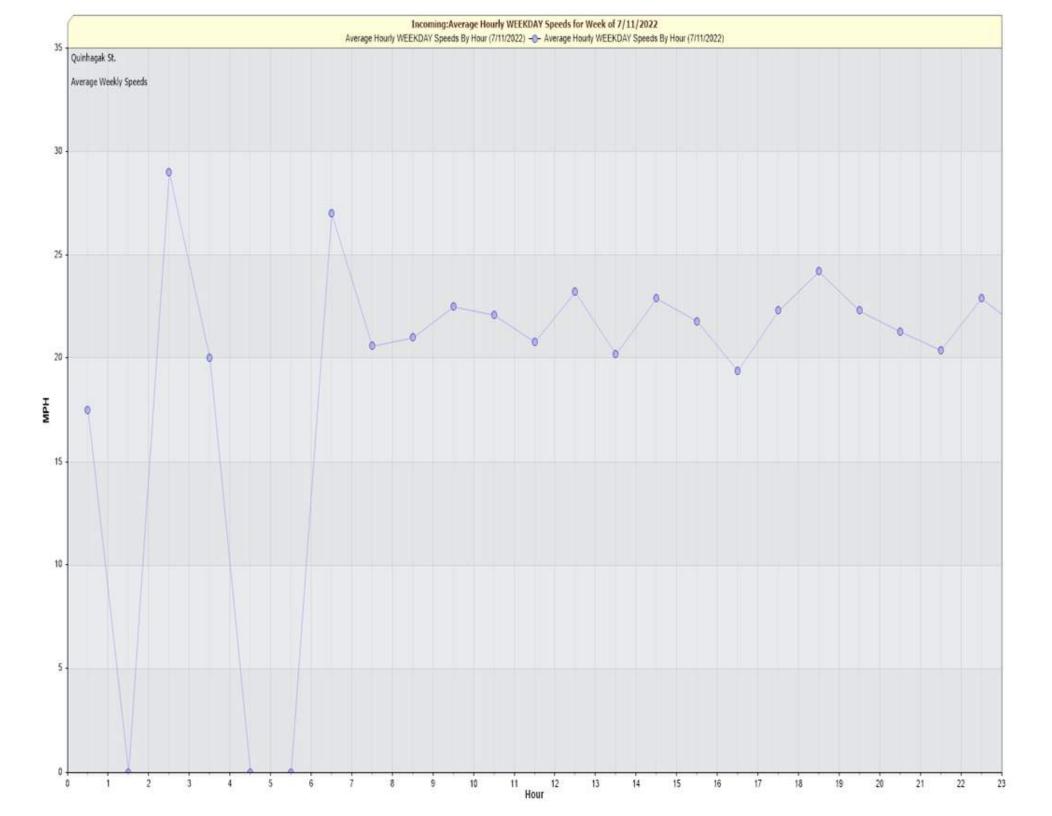
Location: EAST DOWLING ROAD, ANCHORAGE and QUINHAGAK STREET, ANCHORAGE At: Intersection

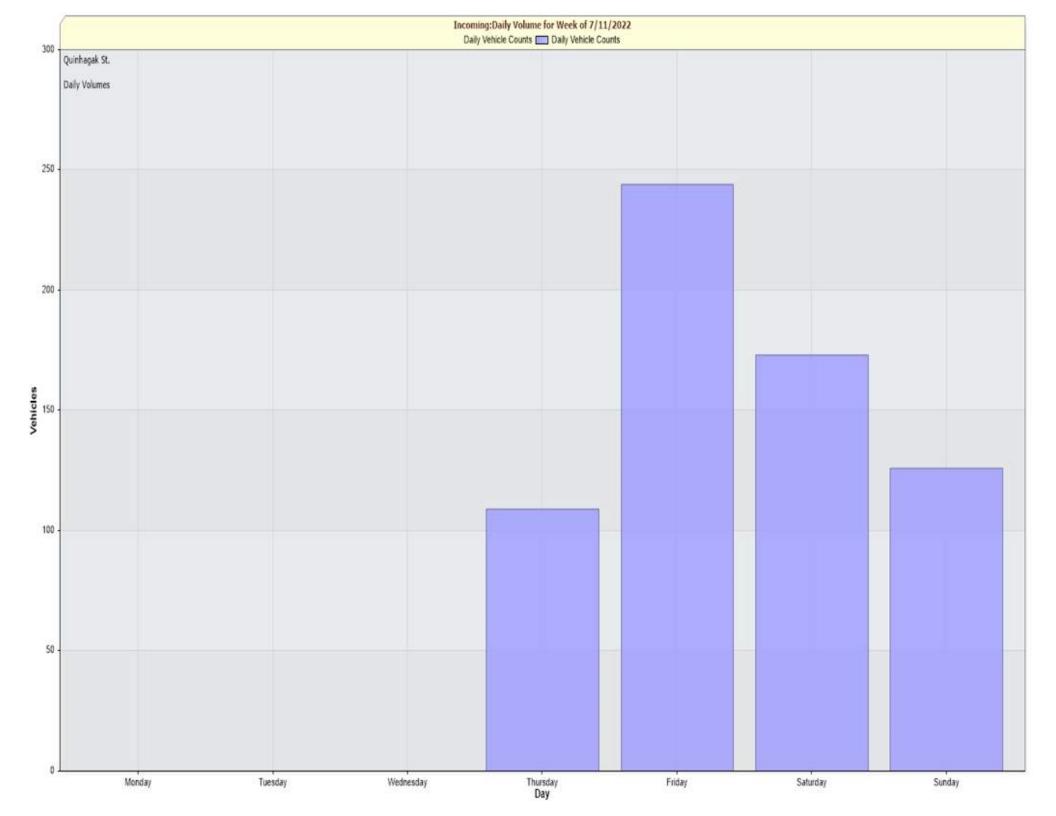
Data Source: MOA Data
Device Type: Pneumatic
Type: Intersection Volume
Report Date: 08/10/2016

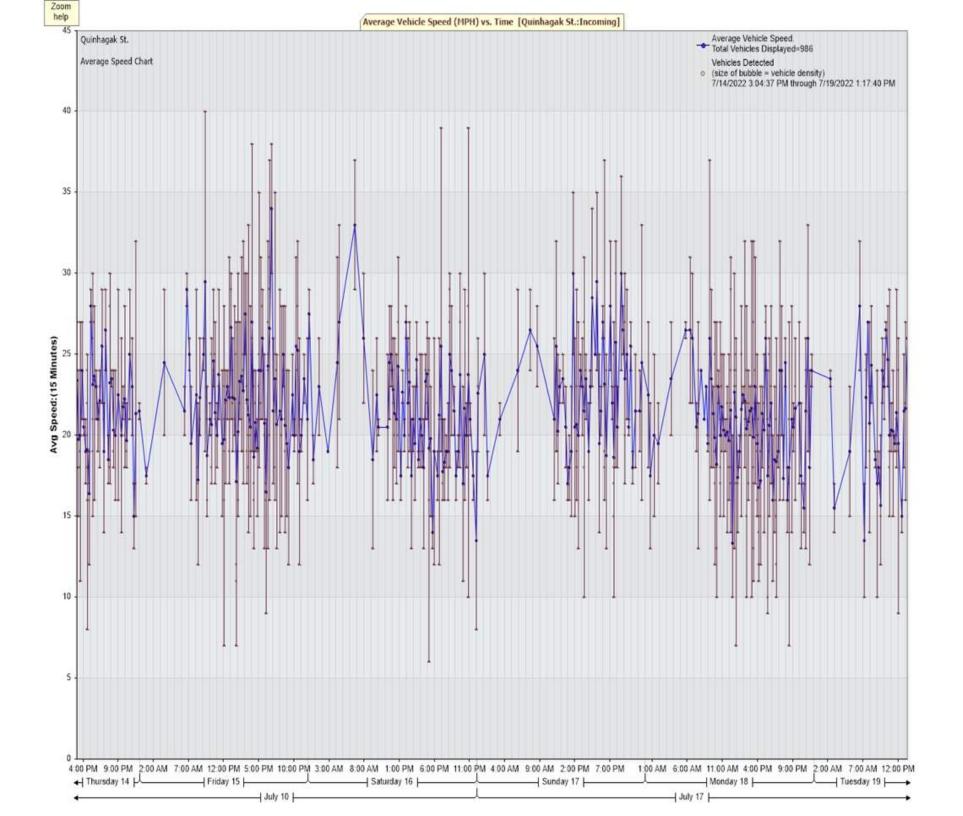
Time Span: 15 Min

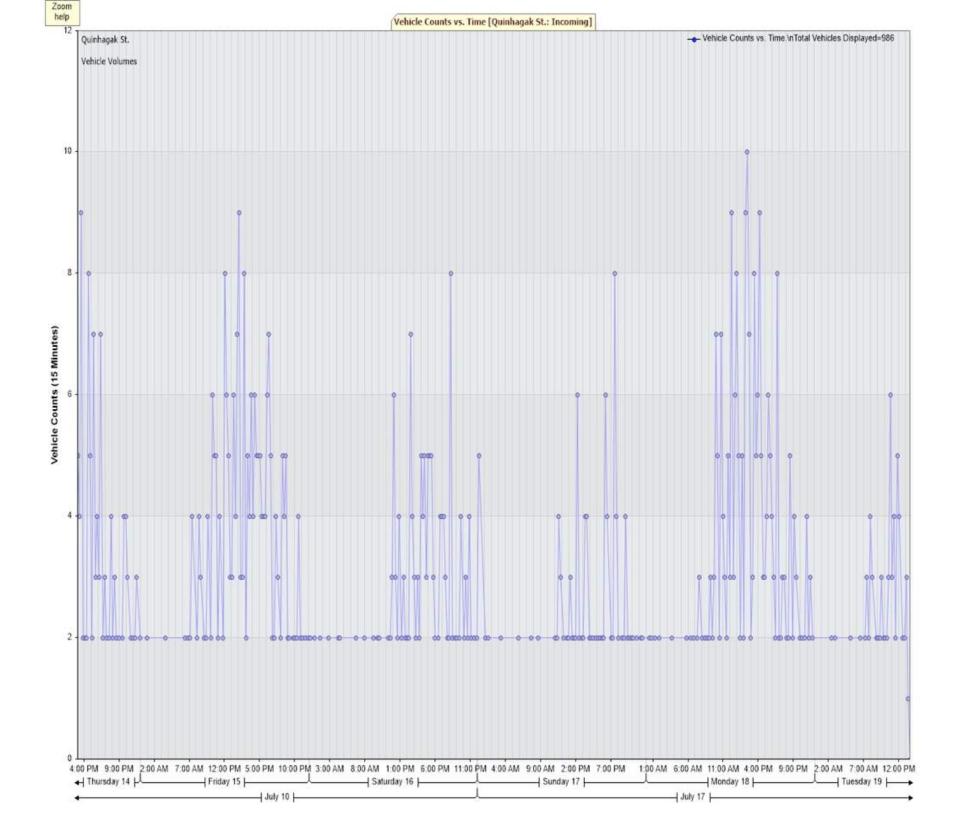
hicles								
START TIME	8/10/2016 Wednesday NBLR	8/10/2016 Wednesday EBTR	8/10/2016 Wednesday WBTL	NB	SB	EB	WB	AL
12:00 AM	5	48	25	5	0	48	25	7
12:15 AM	3	37	23	3	0	37	23	6
12:30 AM	5	31	24	5	0	31	24	6
12:45 AM	1	26	31	1	0	26	31	5
01:00 AM	7	23	22	7	0	23	22	5
01:15 AM	1	23	15	, 1	0	23	15	4
01:30 AM	2	16	16	2	0	16	15	3.
01:45 AM	0	23	8	0	0	23	8	3
02:00 AM	0	30	10	0	0	30	10	4
02:15 AM	2	13	11	2	0	13	11	2
	0			0	0			
02:30 AM	3	10 14	11		-	10	11	2
02:45 AM			6	3	0	14	6	2
03:00 AM	0	11	18	0	0	11	18	2
03:15 AM	3	17	19	3	0	17	19	3
03:30 AM	0	17	7	0	0	17	7	2
03:45 AM	4	16	14	4	0	16	14	3.
04:00 AM	2	25	14	2	0	25	14	4
04:15 AM	6	18	33	6	0	18	33	5
04:30 AM	2	28	33	2	0	28	33	6
04:45 AM	4	31	46	4	0	31	46	8
05:00 AM	4	54	53	4	0	54	53	11
05:15 AM	9	76	78	9	0	76	78	16
05:30 AM	4	76	89	4	0	76	89	16
05:45 AM	8	95	68	8	0	95	68	17
06:00 AM	6	170	105	6	0	170	105	28
06:15 AM	5	144	155	5	0	144	155	30
06:30 AM	13	167	213	13	0	167	213	39
06:45 AM	2	227	208	2	0	227	208	43
07:00 AM	14	250	260	14	0	250	260	52
07:15 AM	17	301	366	17	0	301	366	68
07:30 AM	35	209	364	35	0	209	364	60
07:45 AM	22	215	251	22	0	215	251	48
08:00 AM	27	246	222	27	0	246	222	49
08:15 AM	20	239	243	20	0	239	243	50
08:30 AM	31	207	236	31	0	207	236	47
08:45 AM	23	205	207	23	0	205	207	43
09:00 AM	35	184	170	35	0	184	170	38
09:15 AM	22	226	181	22	0	226	181	42
09:30 AM	18	205	180	18	0	205	180	40
09:45 AM	22	203	164	22	0	203	164	38
10:00 AM	11	187	143	11	0	187	143	34
10:15 AM	18	192	168	18	0	192	168	37
10:30 AM	26	192	100	10	0	132	100	40

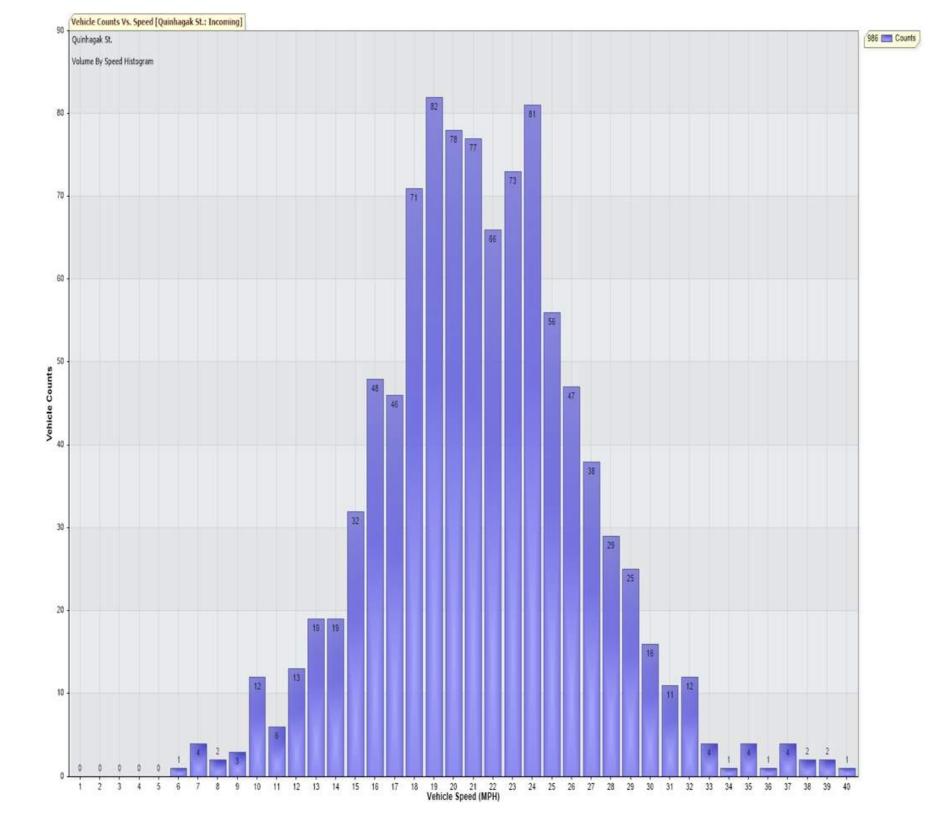

Traffic Data Management System

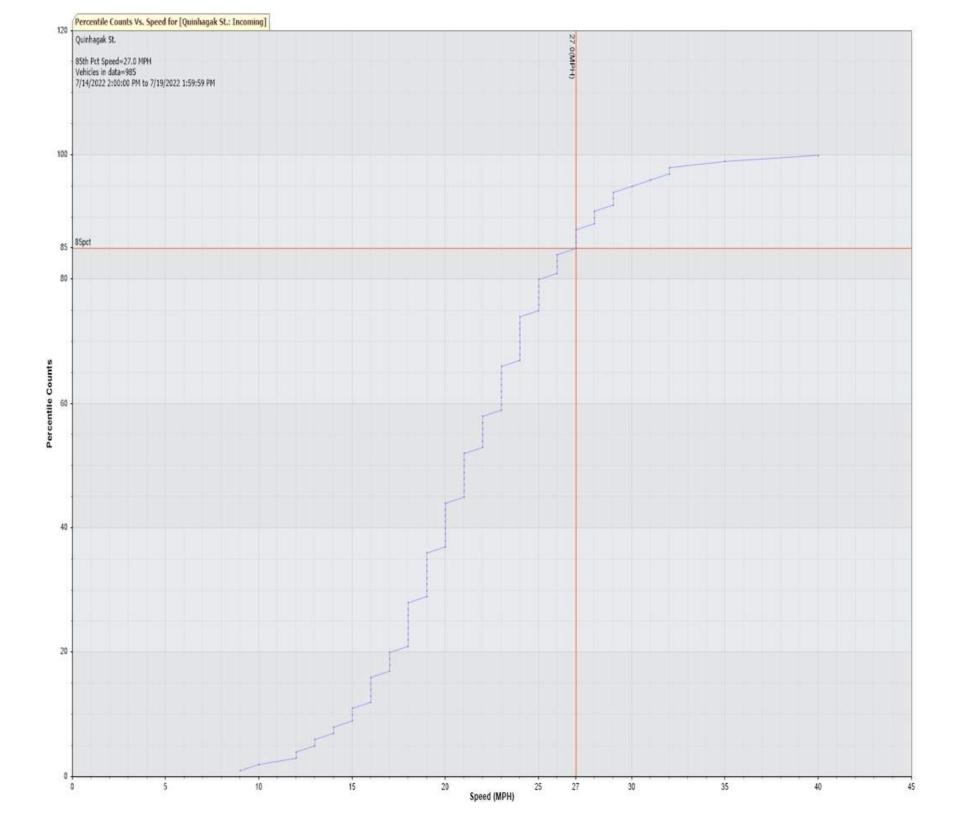

				Traffic Data N	Management System					
10:45 AM		31	18	34	186	31	0	184	186	40
11:00 AM		31	23		153	31	0	232	153	41
11:15 AM		29	26		148	29	0	260	148	43
11:30 AM		26	25		190	26	0	253	190	46
11:45 AM		32	23		187	32	0	247	187	46
12:00 PM		40	24		169	40	0	285	169	40
		29	20		176	29	0			
12:15 PM								246	176	45
12:30 PM		25	26		192	25	0	260	192	47
12:45 PM		26	28		183	26	0	280	183	48
01:00 PM		21	27		173	21	0	279	173	47
01:15 PM		41	22		175	41	0	223	175	43
01:30 PM		37	26		205	37	0	267	205	50
01:45 PM		28	24	18	162	28	0	248	162	43
02:00 PM		26	27	/2	180	26	0	272	180	47
02:15 PM		22	26	0ز	194	22	0	260	194	47
02:30 PM		19	32	21	183	19	0	321	183	52
02:45 PM		30	29	35	210	30	0	295	210	53
03:00 PM		18	33		202	18	0	331	202	55
03:15 PM		33	32		225	33	0	329	225	58
03:30 PM		26	32		191	26	0	329	191	59
		37								
03:45 PM			38		291	37	0	383	291	71
04:00 PM		16	44		229	16	0	442	229	68
04:15 PM		20	44		232	20	0	448	232	70
04:30 PM		27	48		220	27	0	487	220	73
04:45 PM		32	44		221	32	0	446	221	69
05:00 PM		27	42		181	27	0	428	181	63
05:15 PM		28	33	38	220	28	0	338	220	58
05:30 PM		22	39	13	269	22	0	393	269	68
05:45 PM		15	29	34	232	15	0	294	232	54
06:00 PM		22	27	/2	205	22	0	272	205	49
06:15 PM		25	24		203	25	0	247	203	47
06:30 PM		23	27		170	23	0	270	170	46
06:45 PM		16	20		177	16	0	203	177	39
07:00 PM		17	20		153	17	0	216	153	38
		22			135					
07:15 PM			17			22	0	175	135	33
07:30 PM		17 197 18 202			138	17	0	197	138	35
07:45 PM		18			106	18	0	202	106	32
08:00 PM		2	18		128	2	0	189	128	31
08:15 PM		15	20	J3	120	15	0	203	120	33
08:30 PM		5	17	'9	94	5	0	179	94	27
08:45 PM		17	16	4ز	102	17	0	164	102	28
09:00 PM		10	17	/8	100	10	0	178	100	28
09:15 PM		15	18	37	95	15	0	187	95	29
09:30 PM		4	12		96	4	0	123	96	22
09:45 PM		4	12		82	4	0	120	82	20
10:00 PM		10	11		90	10	0	113	90	21
10:15 PM		7	92		66	7	0	92	66	16
10:30 PM		9	88		63	9	0	88	63	16
10:45 PM		9	88		54	9	0	88	54	15
11:00 PM		5	73		42	5	0	73	42	12
11:15 PM		3	6'		39	3	0	61	39	10
11:30 PM		4	70		25	4	0	70	25	9
11:45 PM		0	4	1	30	0	0	41	30	71
				Peak Hour Volum						
AM Peak	NBLR	EBTR	WBTL	NB	SB	EB	1	WB		ALL
7:00 AM - 08:00 AM	88	975	1241	88	0	975		1241		2304
Approach %	100.00%	100.00%	100.00%	3.82%	0.00%	42.32%		53.86%		2004
Midday Peak	NBLR	EBTR	WBTL	NB	SB	EB		WB		ALL
	97	1148	767	97	0	1148		767		2012
	100.00%	100.00%	100.00%	4.82%	0.00%	57.06%		38.12%		
2:00 PM - 03:00 PM Approach %		EBTR	WBTL	NB	SB	EB		WB		ALL
	NBLR		972	100	0	1760		972		2832
Approach % PM Peak	100	1760						34.32%		
Approach % PM Peak 3:45 PM - 04:45 PM	100			3.53%	0.00%	62.15%		34.3270		
Approach % PM Peak 3:45 PM - 04:45 PM Approach %	100 <i>100.00%</i>	100.00%	100.00%	3.53%	0.00%	62.15%				Δ 1.1
Approach % PM Peak 3:45 PM - 04:45 PM Approach % Off Peak	100 100.00% NBLR	100.00% EBTR	100.00%	NB	SB	EB		WB		ALL
PM Peak 03:45 PM - 04:45 PM <i>Approach %</i>	100 <i>100.00%</i>	100.00%	100.00%							ALL 1396

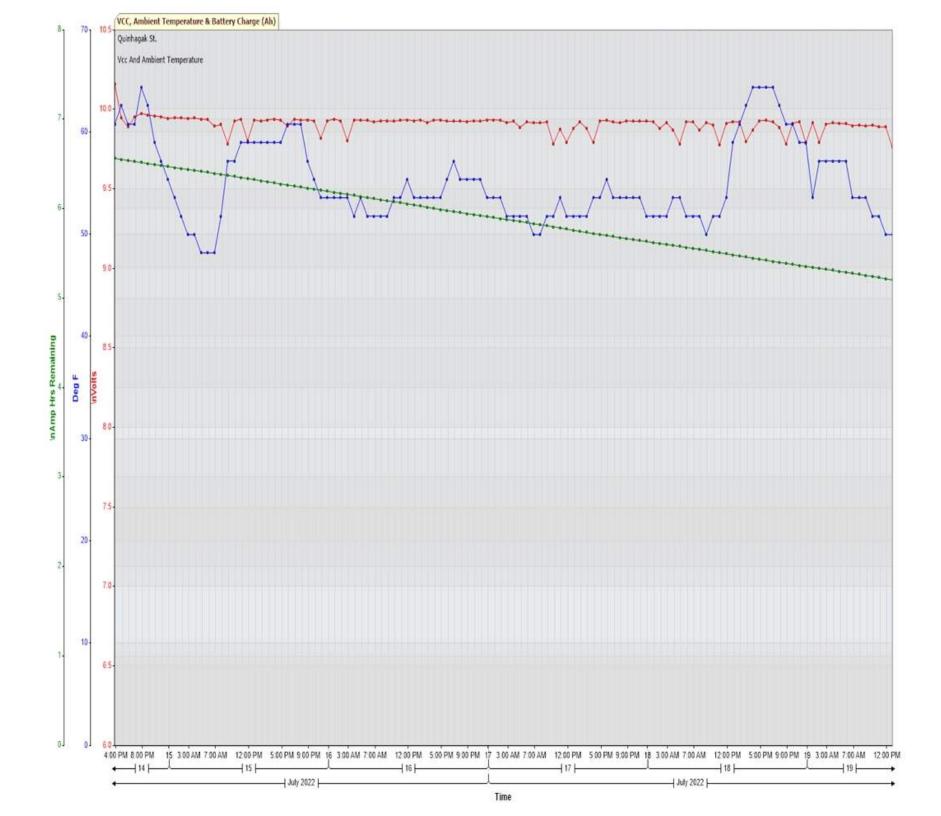

Traffic Data Management System

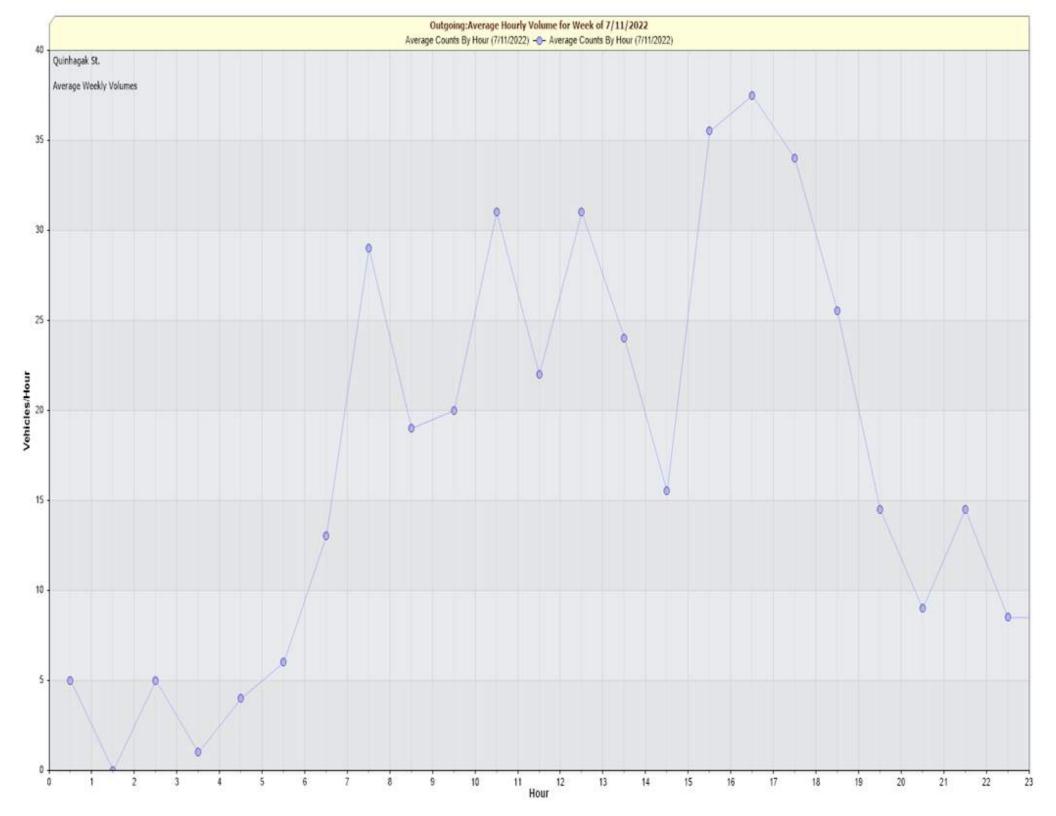

Daily Total									
TIME SPAN	NBLR	EBTR	WBTL	NB	SB	EB	WB	ALL	
24 Hour	1515	17590	12986	1515	0	17590	12986	32091	
Approach %	100.00%	100.00%	100.00%	4.72%	0.00%	54.81%	40.47%		

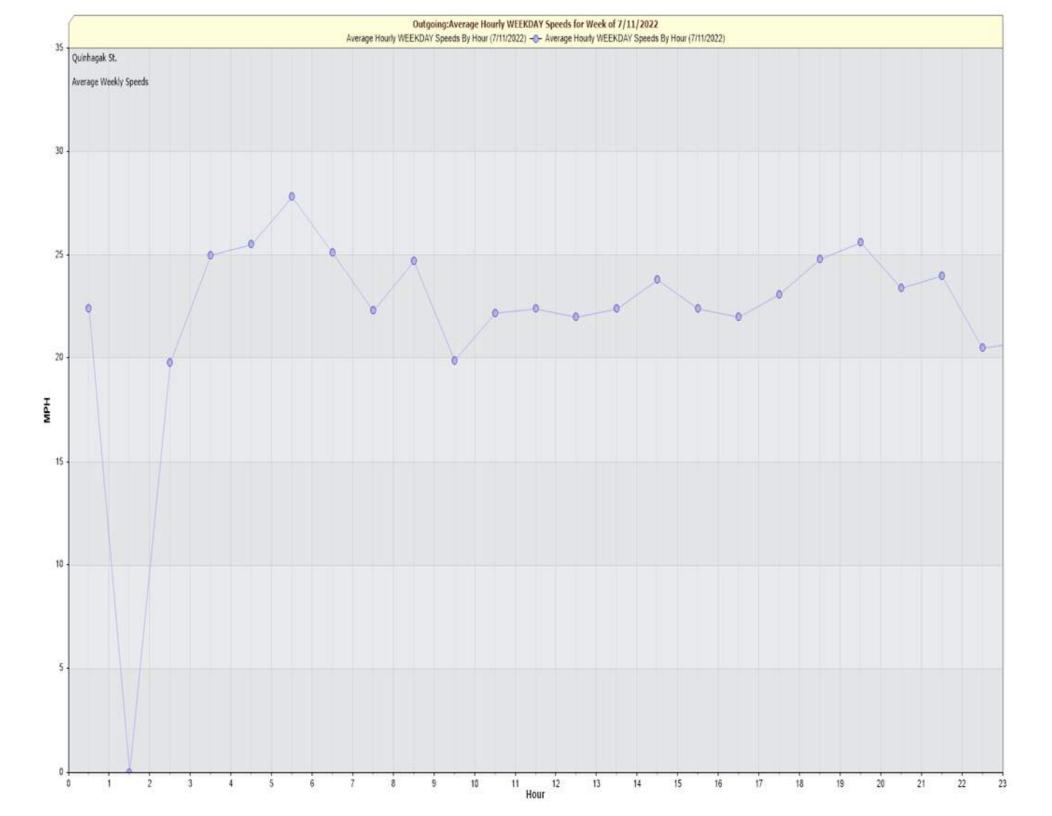

For Project:	Quinhagak	St.					
Project Notes:							
Location/Name:	Incoming						
Report Generated:	07/20/2022	16:56					
Speed Intervals	1 MPH						
Time Intervals	1						
Traffic Report From	07/14/2022	14:00:00	through	07/19/2022	13:59:59		
85th Percentile Speed	27 MPH						
85th Percentile Vehicles	837						
Max Speed	40 MPH	on	07/15/2022	09:16:19			
Total Vehicles	986						
AADT:	197						
Volumes -							
weekly counts							
	Time	5 Day	7 Day				
Average Daily		171	164				
AM Peak	10:00	16	16				
PM Peak	03:00	20	16				
Speed							
Speed Limit:	25						
85th Percentile Speed:	27						
Average Speed:	21.42						
	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
Count over limit	39	14	N/A	20	54	39	31
% over limit	14.8	19.7	N/A	18.3	22.1	22.5	24.6
Avg Speeder	28.4	27.5	N/A	28.0	29.5	28.4	29.6
Class Counts	Number	%					
VEH_SM	2	0.2					
VEH_MED	967	98.1					
VEH_LG	17	1.7					
[VEH_SM=motorcycle,	VEH_MED = sedan,	VEH_LG = truck]					

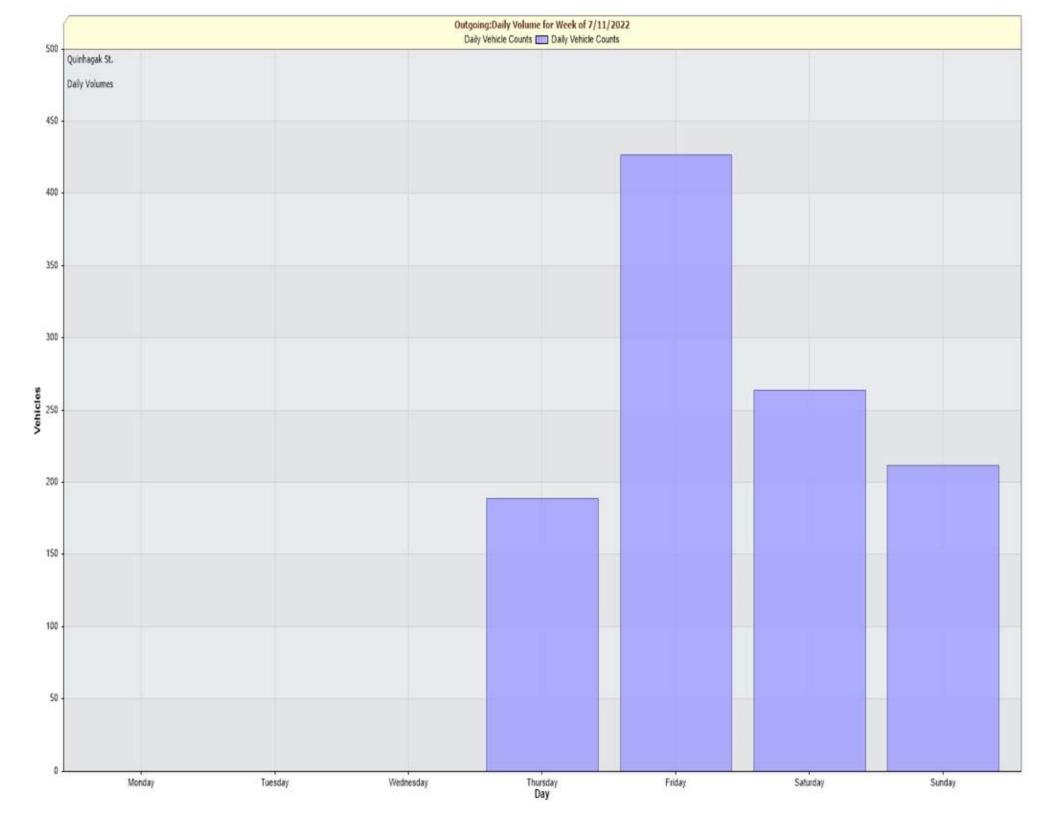


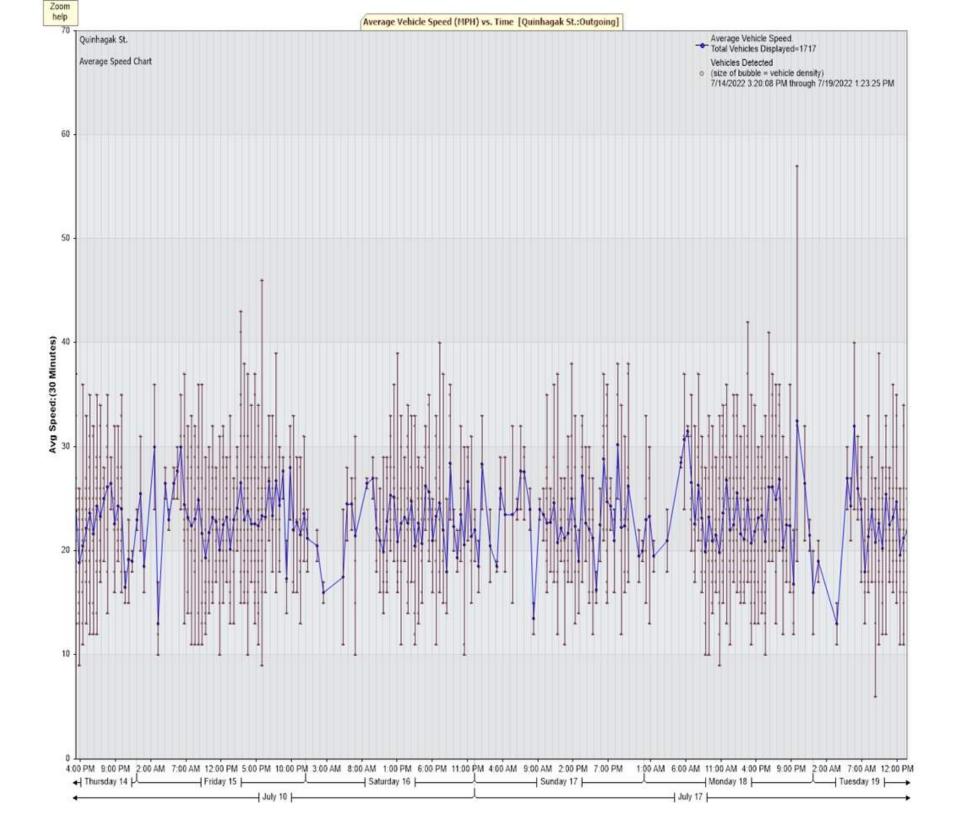












For Project:	Quinhagak	St.					
Project Notes:							
Location/Name:	Outgoing						
Report Generated:	07/20/2022	16:56					
Speed Intervals	1 MPH						
Time Intervals	Instant						
Traffic Report From	07/14/2022	14:00:00	through	07/19/2022	13:59:59		
85th Percentile Speed	29 MPH						
85th Percentile Vehicles	1459						
Max Speed	57 MPH	on	07/18/2022	21:25:08			
Total Vehicles	1717						
AADT:	343						
Volumes -							
weekly counts							
-	Time	5 Day	7 Day				
Average Daily		310	286				
AM Peak	11:00	31	27				
PM Peak	04:00	36	29				
Speed							
Speed Limit:	25						
85th Percentile Speed:	29						
Average Speed:	23.01						
	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
Count over limit	132	50	N/A	52	147	76	70
% over limit	30.3	26.3	N/A	27.5	34.4	28.8	33.0
Avg Speeder	30.2	29.1	N/A	29.7	29.5	29.6	30.1
Class Counts	Number	%					
VEH_SM	4	0.2					
VEH_MED	1650	96.1					
VEH_LG	63	3.7					
[VEH_SM=motorcycle,	VEH_MED = sedan,	VEH_LG = truck]					

DataSource: MOA Data Location: QUINHAGAK STREET, ANCHORAGE and: EAST 64TH AVENUE, ANCHORAGE At: Intersection Station: Type: Intersection Volume Report Date: 11/17/2022

START_TIME	11/17/2022 Thursday NBL	11/17/2022 Thursday NBT	11/17/2022 Thursday NBR	11/17/2022 Thursday SBL	11/17/2022 Thursday SBT	11/17/2022 Thursday SBR	11/17/2022 Thursday EBL	11/17/2022 Thursday EBT	11/17/2022 Thursday EBR	11/17/2022 Thursday WBL	11/17/2022 Thursday WBT	11/17/2022 Thursday WBR	NB	SB	EB	WB	A
12:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
12:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
12:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
12:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1:15 AM	0	0	0	0	_	-	0		0	0	-	0	0	0	0	0	_
1:30 AM	0	0	0	0	0	-	0	-	0	0	0	0	0	0	0	0	
1:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	l
2:00 AM	0	0	0	0	-	-	0	-	0	0	0	0	0	0	-	0	
2:15 AM	0	0	0	0	0	-	0	-	0	0	0	0	0	0	0	0	
2:30 AM	0	0	0	0	0	-	0	-	0	0	0	0	0	0	0	0	
2:45 AM	0	0	0	0	0		0		0	0	0	0	0	0	0	0	Ļ
3:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
3:15 AM	0	0	-	0	-	-	0	-	0	0		0	0	0	0	0	
3:30 AM	0	0	-	0	0	-	0	-	0	0	0	0	0	0	0	0	
3:45 AM	0	0		0	0	-	0		0	0	-	0	0	0	0	0	
4:00 AM	0	0	-	0	_	-	-	-	0	0	0	0	0	0	-	0	
4:15 AM	0	0	ő	0	0	-	0	-	0	0		0	0	0	0	0	
4:30 AM	0	0	•	0	0	-	0	0	0	0	0	0	0	0	0	0	
4:45 AM	0	0		0	0	0	0		0	0	-	0	0	0	0	0	
5:00 AM	0	0		0		0	0	-	0	0	0	2	1	1	0	2	
5:15 AM	0	0	0	0	1	0	0	0	0	0	1	0	0	1	0	1	
5:30 AM	1	0	0	0	0	2	1	0	0	0	1	3	1	2	1	4	
5:45 AM	0	0	0	0	0		0	1	0	0	2	0	0	1	1	2	
6:00 AM	0	1	0	0	-	-	-	-	1	0	1	2	1	0	1	3	
6:15 AM	1	1	0	0	0	-	0		0	0		2	2	0	0	3	
6:30 AM	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	
6:45 AM	1	1	0	1	0	-	3	0	0	0	2	1	2	1	3	3	
7:00 AM	2	1	0	0	-		1	0	0	0	4	2	3	4	1	6	
7:15 AM	1	2	-	1	0	-	3	0	3	0		3	3	7	6	4	
7:30 AM	2	6	0	3	3	16	6	1	0	1	3	4	8	22	7	8	
7:45 AM	2	1	0	0	4	53	36		3	1	5	2	3	57	39	8	
8:00 AM	3	1	0	2	2	64	43		16	0	6	4	4	68	63	10	
8:15 AM	2	4	0	2	4	14	36		3	0	2	2	6	20	40	4	
8:30 AM	2	2	0	2	1	3	1	-	2	0	1	3	4	6	3	4	l
8:45 AM	2	2	0	4	1	7	0		0	0		4	4	12	0	4	l
9:00 AM	1	3	0	0			-	0	0	1	2	1	4	8	3	4	
9:15 AM	3	1	0	1	3	3	1	0	0	1	2	1	4	7	1	4	ĺ
9:30 AM	2	0	1	1	1	5	2	0	0	0	2	1	3	7	2	3	ļ
9:45 AM	1	3	1	0	1	2		1	1	0	1	2	5	3	3	3	4
10:00 AM	2	1	0	1	2	3	3	2	0	0	1	4	3	6	5	5	

													а – а	_			
10:15 AM	1	0	-	-	0				1			C		7	6	1	15
10:30 AM	2	-	-		1	5			(-		3		8	1	5	16
10:45 AM	0		0	1	2	5		1	2	2 0	2	3	8 4	8	6	5	23
11:00 AM	1	1	0	2	2	5	4	0	C	0 0	2	C	2	9	4	2	17
11:15 AM	0	0	0	2	3	10	4	1	C	0 0	0	1	. 0	15	5	1	21
11:30 AM	2	0	0	3	1	5	5	0	(0 0	2	2	2 2	9	5	4	20
11:45 AM	3	1	0	4	3	5	3	0	2	2 2	2	2	. 4	12	5	6	27
12:00 PM	3	1	0	3	2	4	5	0	1	L O	1	2	4	9	6	3	22
12:15 PM	0	2	1	0	2	6	3	2	1	L O	3	3	3	8	6	6	23
12:30 PM	2			-	2	8			2					11	11	5	29
12:45 PM	1				2	5		0	1					8	6	1	17
1:00 PM	2		-		0	11			2					15	7	1	25
1:15 PM	0				2	5			(2		10	, 4	4	20
1:13 PM 1:30 PM			-	-	2	8		-		-		2	_		4		
	3				-				2	-	-		-	13	-	5	32
1:45 PM	2		-	-	4	6		-	2	-				10	4	1	19
2:00 PM	0		-		5	7			2			-		12	8	0	21
2:15 PM	1		-		4	9			3			1	_	18	8	2	30
2:30 PM	1	1	•	-	4	20			2			2	_	27	15	5	49
2:45 PM	2		-		1	33	5		2	-	-	C	-	35	7	3	48
3:00 PM	0	4	0	4	3	27	68	1	17	7 0	1	1	. 4	34	86	2	126
3:15 PM	2	1	0	6	4	10	21	2		3 0	1	e	5 3	20	26	7	56
3:30 PM	0	3	0	2	4	11	4	1	9	3 0	2	2	3	17	8	4	32
3:45 PM	2	2	1	7	9	5	3	3	2	2 0	1	1	. 5	21	8	2	36
4:00 PM	0	2	0	6	3	8	3	2	2	2 3	3	5	5 2	17	7	11	37
4:15 PM	2	2	0	4	7	12	17	1	4	1 0	1	2	2 4	23	22	3	52
4:30 PM	0	2	2	7	6	10	17	1	2	2 0	1		8 4	23	20	4	51
4:45 PM	3	3	0	4	6	8	8	4	2	2 1	3		6	18	14	7	45
5:00 PM	1	2	1	7	1	8	7	2	2	2 1	0	3	4	16	11	4	35
5:15 PM	2			3	6	9		2	8		2	2	4	18	18	4	44
5:30 PM	2	2	0	2	3	5	5	2	5	5 0	2	1	4	10	12	3	29
5:45 PM	5				3	4			4			1	. 5	10	9	1	25
6:00 PM	0				2	5			(3		11	3	4	22
6:15 PM	2		-		3	4			3	-	4	1		11	6	5	24
6:30 PM	0	2			1	4	3		1		-	5	_	8	4	8	24
6:45 PM	2	1		-	2	4			1	-	0		_	0	4	1	10
5:45 PM 7:00 PM	2	_	Ŭ	-	3	3	0	_		- · ·	0	1		4	2	4	
		0	-	-		-	-	-	2		5		_	11		-	18
7:15 PM	1		-		4	1	2		1		0	0		12	3	0	17
7:30 PM	2		-	-	7	0	-	-	4	-		2	-	10	4	3	21
7:45 PM	3				3	2			3			3		6	4	4	18
8:00 PM	0	1		-	6	0			0		-			9	1	1	12
8:15 PM	0			-	4	0		_	1	•	0	C		6	3	0	9
8:30 PM	0				3	0	1	2	(-	-		4	3	0	7
8:45 PM	0	4	0	2	2	2	0	0	1		-	C		6	1	1	12
9:00 PM	1	2	0	1	4	1	0	2	(0 0	1	C) 3	6	2	1	12
9:15 PM	1	6	0	3	2	0	0	0	(0 0	2	C) 7	5	0	2	14
9:30 PM	2	1	0	2	5	1	0	0	(0 0	0	C) 3	8	0	0	11
9:45 PM	0	1	0	2	1	0	1	1	(0 0	1	C) 1	3	2	1	7
10:00 PM	1	1	0	1	1	0	1	0	(0 0	1	1	. 2	2	1	2	7
10:15 PM	0	0	0	0	1	0	0	1	(0 0	0	C	0 0	1	1	0	2
10:30 PM	0	0	0	0	1	1	0	0	1	L O	1	C	0 0	2	1	1	4
	v	, v	Ű		-	-	Ŭ	Ŭ	-	ı			-	-	-	-	

10:45 PM	1	0	0	1	1	0	0	0	1	. 0	1	0	1	2	1	1	5
11:00 PM	0	0	0	0	0	0	0	0	C	0 0	0	0	0	0	0	0	0
11:15 PM	0	0	0	0	0	0	0	0	C	0 0	0	0	0	0	0	0	0
11:30 PM	0	0	0	0	0	0	0	0	C	0 0	0	0	0	0	0	0	0
11:45 PM	0	0	0	0	0	0	0	0	C) 0	0	0	0	0	0	0	0

Peak Hour Volumes

AM Peak	NBL	NBT	NBR	SBL	SBT	SBR	EBL	EBT	EBR	WBL	WBT	WBR	NB	SB	EB	WB	ALL
07:30 AM - 08:30 AM	9	12	0	7	13	147	121	6	22	2	16	12	21	167	149	30	367
Approach %	42.86%	57.14%	0.00%	4.19%	7.78%	88.02%	81.21%	4.03%	14.77%	6.67%	53.33%	40.00%	5.72%		40.60%	8.17%	
PP																	
Midday Peak	NBL	NBT	NBR	SBL	SBT	SBR	EBL	EBT	EBR	WBL	WBT	WBR	NB	SB	EB	WB	ALL
02:00 PM - 03:00 PM	4	4	0	9	14	69	26	1	11	1	6	3	8	92	38	10	148
Approach %	50.00%	50.00%	0.00%	9.78%	15.22%	75.00%	68.42%	2.63%	28.95%	10.00%	60.00%	30.00%	5.41%	62.16%	25.68%	6.76%	
						•	•										
PM Peak	NBL	NBT	NBR	SBL	SBT	SBR	EBL	EBT	EBR	WBL	WBT	WBR	NB	SB	EB	WB	ALL
03:00 PM - 04:00 PM	4	10	1	19	20	53	96	7	25	0	5	10	15	92	128	15	250
Approach %	26.67%	66.67%	6.67%	20.65%	21.74%	57.61%	75.00%	5.47%	19.53%	0.00%	33.33%	66.67%	6.00%	36.80%	51.20%	6.00%	
Off Peak	NBL	NBT	NBR	SBL	SBT	SBR	EBL	EBT	EBR	WBL	WBT	WBR	NB	SB	EB	WB	ALL
07:00 PM - 08:00 PM	7	3	1	16	17	6	2	1	10	0	5	6	11	39	13	11	74
Approach %	63.64%	27.27%	9.09%	41.03%	43.59%	15.38%	15.38%	7.69%	76.92%	0.00%	45.45%	54.55%	14.86%	52.70%	17.57%	14.86%	
Daily Total																	
TIME SPAN	NBL	NBT	NBR	SBL	SBT	SBR	EBL	EBT	EBR	WBL	WBT	WBR	NB	SB	EB	WB	ALL
24 Hour	90	101	10	160	180	491	400	58	129	14	105	117	201	831	587	236	1855
Approach %	44.78%	50.25%	4.98%	19.25%	21.66%	59.09%	68.14%	9.88%	21.98%	5.93%	44.49%	49.58%	10.84%	44.80%	31.64%	12.72%	

Date Range: **1/1/2014 - 12/31/2021** Intersection Related: **Yes** Location: **Street: QUINHAGAK STREET @ EAST 64TH AVENUE**

Date	Time	Dir	Street	Cross Reference	1st Harmful Event Location	Most Harmful Event	Impact	Unit No.	Most Contributing Unit	Unit Event	Vehicle Circumstances 1	Vehicle Circumstances 2	Vehicle Action			Human Circum 3	Circum	Alcohol / Drugs Suspected	Int Related
05/40/2044	02:22 DM	News		QUINHAGAK	Deedeide	Motor Vehicle	Front-to-	1	Yes	Motor Vehicle In- Transport	None		Straight ahead	Unk	HR			No / No	Related
05/16/2014	02:33 PM		, ,	STREET, ANCHORAGE	Roadside	In- Transport	Front	2	No	Motor Vehicle In- Transport	None		Stopped	Other				No / No	Related
09/25/2015	00:50 AM	None	QUINHAGAK	-	Boodway		Sideswipe - Same	1	Yes	Motor Vehicle In- Transport	None		Passing	Improper passing				No / No	Related
09/23/2013	09.50 AM		,	AVENCE, ANCHORAGE	Roadway	In- Transport	Direction	2	No	Motor Vehicle In- Transport	None		Stopped					/	Related
01/21/2020	00:01 AM	News		QUINHAGAK	Deedway	Motor Vehicle	Angla	1	Yes	Motor Vehicle In- Transport	None		Straight ahead	Stop sign violation				No / No	Related
01/21/2020	00.2 T AM			STREET, ANCHORAGE	Roadway	In- Transport	Angle	2	No	Motor Vehicle In- Transport	None		Straight ahead	No improper driving				No / No	Related

Date Range: 1/1/2014 - 12/31/2021 Intersection Related: Yes Location: Street: QUINHAGAK STREET @ EAST 63RD AVENUE

Date	Time	Dir	Street	Cross Reference	1st Harmful Event Location	Most Harmful Event	Impact		Most Contributing Unit	Unit Event	Vehicle Circumstances 1	Vehicle Circumstances 2	Vehicle Action			Circum	Alcohol / Drugs Suspected	Int Related
								1	Yes	Motor Vehicle In- Transport	None		Passing	Unk	HR		No / No	Related
			QUINHAGAK	EAST 63RD		Motor		2	No	Motor Vehicle In- Transport	None		Turning left	Unk			No / No	Related
02/16/2018	02:50 PM			AVENUE,	Roadway	Vehicle In- Transport	Angle	3	No	Not-In- Motion or Working Motor Vehicle is Struck by Motor Vehicle In- Transport	None		Parked				I	Related

Memorandum

Date:	September 6, 2022
То:	Russ Oswald, PE, PLS & Jennifer Noffke – MOA PM&E
Through:	Justin Keene, PE - CRW Engineering Group, LLC
From:	Kelly Yanoshek, EIT - CRW Engineering Group, LLC
Project:	Quinhagak Street Reconstruction
Project No:	MOA PM&E#21-13 (CRW#10155.00)
Subject:	Parking Study

Purpose and Background

The Municipality of Anchorage Project Management & Engineering Department (PM&E) plans to reconstruct Quinhagak Street from East Dowling Road to Askeland Drive. To aid in the design of the improvements, an on-street parking study was completed for the project roadway. The purpose of the study was to document the current use of on-street parking for consideration in the design of the proposed improvements. Parked vehicles within the adjacent parking lots/driveways were also noted during the study to document available adjacent off-street parking.

Quinhagak Street is approximately 1,500 feet long and runs parallel and between Petersburg Street and Tuttle Place. Adjacent Quinhagak Street parcels are zoned for industrial use from East Dowling Road to East 64th Avenue then the zoning changes to residential south of East 64th Avenue to Askeland Drive. Many of the business access driveways/parking areas along Quinhagak Street are fenced off and a few of the lots have fencing with privacy slats preventing accurate parking analysis on-property.

The parking study was based on observations from four separate site visits, documenting parked vehicles located along the roadway and in visible, adjacent parking lots. Site visits were completed on one weekday afternoon/evening and one weekend afternoon/evening.

Responses from Questionnaire

A survey questionnaire was mailed and e-mailed out to the residents/owners within and near the project limits in June 2022. A total of 21 responses were received of which 5 owned properties along Quinhagak Street. The question regarding if there should be space for on-street parking along Quinhagak Street & the responses are shown in the table below.

Question	Answers
Do you think there should be space for on-street parking along Quinhagak Street?	No (17), Yes (3)

Of the three respondents who answered yes, one of them lives along Quinhagak Street and the other two live within the project limits. The respondent who lives along Quinhagak Street lives northwest of the Quinhagak Street/Askeland Drive intersection.

Observations

The observations took place Thursday, July 14, 2022 and Saturday, July 16, 2022. The weather on Thursday was sunny, with temperatures in the 60s and Saturday was overcast with similar temperatures. The attached figure summarizes the parking observations during the site visits.

September 6, 2022 21-13 Quinhagak Street Reconstruction Parking Study

During the parking study only one car was parked on the roadway near Askeland Drive. This vehicle was parked in the same location for all four site visits. Parking lots/driveways were visually observed to analyze occupancy to assess available off-street parking. The parking lot observations were recorded as a percentage of capacity utilization and are also noted on the attached figure.

Recent construction on East Dowling Road at the Seward Highway may have affected the parking counts with less traffic driving through Quinhagak Street correlating to the low number of parked vehicles on the roadway.

Conclusions

With no cars observed parked on the roadway except for near Askeland Drive, there is no shortage of available on-street parking. Each business in the industrial zone north of East 64th Avenue also appears to have enough parking on their private lots.

The greatest demand for on-street parking appears to be closer to Askeland Drive in the residential zone where there are a few driveways requiring on-street parking. This is also in the same location where the lone resident responded that they think there should be space for on-street parking on Quinhagak Street.

le Path: J:\JobsData\10155.00 Quinhagak Street Reconstruction\00 CADD 2019\04 GIS\05 Parking Map\05 Parking Map.aprx

#AECL882-AK

Figure: Service Layer: Maxar Technologies Inc., Alaska Geospatial Office, USGS

PARKING STUDY

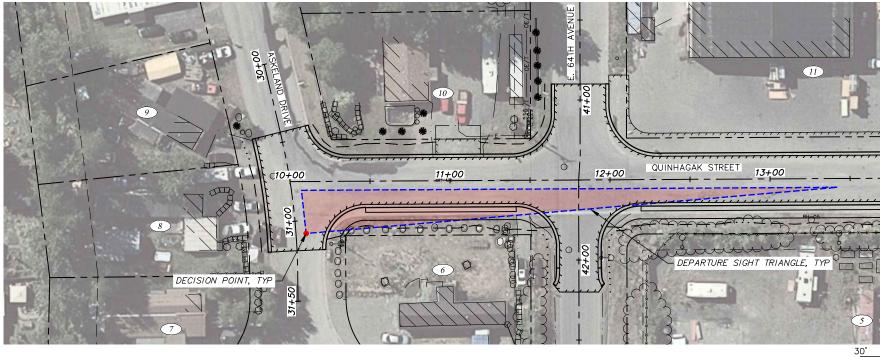
Quinhagak Street Reconstruction – E. Dowling Road to Askeland Drive MOA PM&E Project #21-13

Easement Spreadsheets

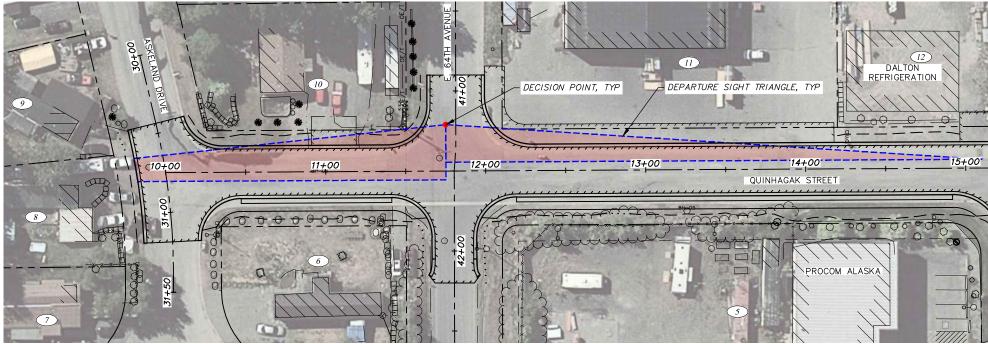
Appendix H

ROW REQUIREMENTS ESTIMATE - ALTERNATIVE 2 - FINAL DSR

PARCEL	PUE	SE	TCE	FHE	Drainage Easement	# Of TCI
1			Х	Х	Х	3
2					Х	1
3				Х	X	1
4					Х	3
5						1
6				Х	X	0
7						0
8						0
9						0
10						2
11						1
12						2
13						1
14						2
15			X			2
16						2
17						2
TOTAL	0	0	2	3	5	23


ROW REQUIREMENTS ESTIMATE - ALTERNATIVE 3 - FINAL DSR

	TCE	FHE	Easement	# Of TCI
	Х			3
				1
				1
				3
				0
		Х		1
				0
				0
				0
				2
				1
				1
				1
				1
	X			2
				2
				2
				Image: second


Quinhagak Street Reconstruction – E. Dowling Road to Askeland Drive MOA PM&E Project #21-13

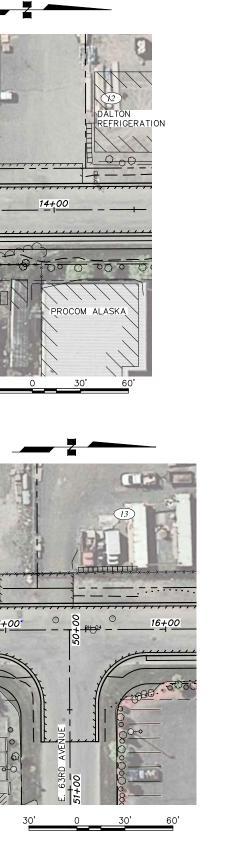
Intersection Departure Sight Triangles

QUINHAGAK STREET & ASKELAND DRIVE INTERSECTION
SCALE: GRAPHIC

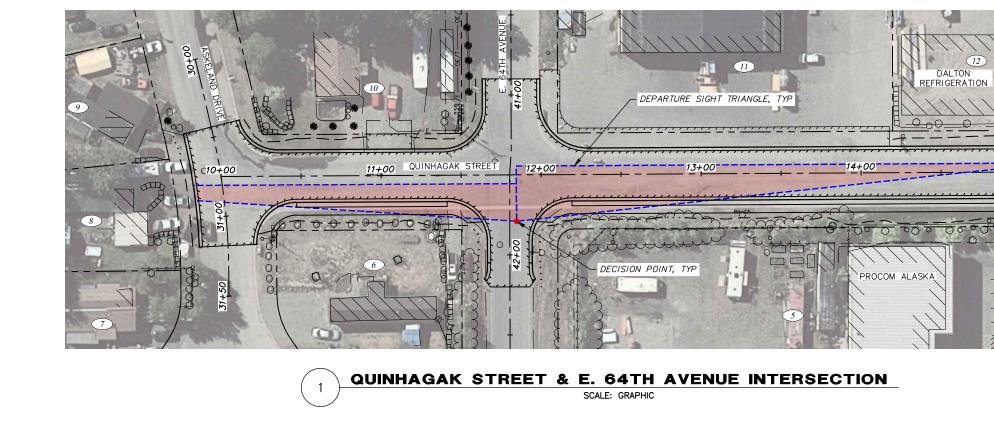


1

2


QUINHAGAK STREET & E. 64TH AVENUE INTERSECTION

SCALE: GRAPHIC



DECISION POINT FOR EACH INTERSECTION IS SETBACK 18' FROM EDGE OF TRAVELED WAY PER FIGURE 1–19 OF THE MOA DCM. DESIGN SPEED OF 30 MPH FOR QUINHAGAK STREET IS USED IN SIGHT DISTANCE ANALYSIS.

NOTE:

	PROJECT MANAGEMENT AND ENGINEERING DEPARTMENT
	21–13 QUINHAGAK STREET RECONSTRUCTION
	INTERSECTION DEPARTURE SIGHT TRIANGLES
	SCALE HOR. 1"=30' GRID SW2033 III VER. N/A DATE NOV 2023 STATUS DSR SHEET 12

SCALE: GRAPHIC

DECISION POINT FOR EACH INTERSECTION IS SETBACK 18' FROM EDGE OF TRAVELED WAY PER FIGURE 1–19 OF THE MOA DCM. DESIGN SPEED OF 30 MPH FOR QUINHAGAK STREET IS USED IN SIGHT DISTANCE ANALYSIS.

NOTE:

BRYAN JEFFERY MOTORS, LLC.
PROJECT MANAGEMENT AND ENGINEERING DEPARTMENT 21-13 QUINHAGAK STREET RECONSTRUCTION INTERSECTION DEPARTURE SIGHT TRIANGLES SCALE HOR. 1"=30' VER. N/A ORID SW2033 DATE NOV 2023 STATUS DSR SHEET 12 of 12

Quinhagak Street Reconstruction – E. Dowling Road to Askeland Drive MOA PM&E Project #21-13

Project Cost Estimates

Appendix J

ENGINEER'S ESTIMATE - FINAL DSR - ALTERNATIVE 2

ITEM	MASS			CALC.	CONT.	ROUND			
No.	No.	ITEM DESCRIPTION	UNIT	QUANT	FACTOR	FACTOR	EST QUANT	UNIT PRICE	TOTAL COST
Schedul	e A - Ro	adway Improvements							
A-1	20.02	Storm Water Pollution Prevention Plan (Type 3)	LS	1	1.00	0	1	\$30,000	\$30,000
A-2	20.03	Test Pit for Utility Locate	Hour	24	1.00	0	24	\$800	\$19,200
A-3	20.04	Clearing and Grubbing	LS	1	1.00	0	1	\$30,000	\$30,000
A-4	20.07	Remove Sidewalk or Concrete Apron	SY	85	1.00	0	85	\$35	\$2,975
A-5	20.08	Remove Curb and Gutter	LF	3,161	1.00	0	3,161	\$12	\$37,932
A-6	20.09	Remove Pavement	SY	7,462	1.00	0	7,462	\$4	\$29,848
A-7	20.10	Unusable Excavation	CY	18,001	1.20	-2	21,600	\$19	\$410,400
A-8	20.12	Dewatering	LS	1	1.00	0	1	\$12,000	\$12,000
A-9	20.21	Classified Fill and Backfill (Type II)	Ton	10,245	1.20	-2	12,300	\$18	\$221,400
A-10	20.21	Classified Fill and Backfill (Type II-A)	Ton	8,324	1.20	-2	10,000	\$19	\$190,000
A-11	20.22	Leveling Course	Ton	730	1.06	-1	770	\$60	\$46,200
A-12	20.25	Geotextile (Type A)	SY	9,618	1.00	-1	9,620	\$2	\$19,240
A-13	20.26	Insulation Board (R-9)	SF	69,234	1.01	-1	69,930	\$4	\$279,720
A-14	20.26	Insulation Board (R-4.5)	SF	6,034	1.01	-1	6,090	\$3	\$18,270
A-15	30.02	P.C.C. Curb and Gutter (All Types)	LF	3,216	1.00	0	3,216	\$40	\$128,640
A-16	30.03	P.C.C. Sidewalk (6" Thick, Standard Finish)	SY	782	1.00	0	782	\$120	\$93,840
A-17	30.04	P.C.C. Curb Ramp (6" Thick)	EA	7	1.00	0	7	\$4,500	\$31,500
A-18	30.04	Detectable Warnings	SF	77	1.00	0	77	\$150	\$11,550
A-19	30.10	Colored Concrete (Red, 6" Thick, Imprinted)	SY	283	1.00	0	283	\$300	\$84,900
A-20	40.06	A.C. Pavement (Class D)	Ton	665	1.00	0	665	\$175	\$116,375
A-21	40.06	A.C. Pavement (Class E)	Ton	758	1.06	-1	800	\$175	\$140,000
A-22	50.06	Remove and Replace Manhole Cone Section	EA	3	1.00	0	3	\$2,650	\$7,950
A-23	50.06	Remove and Replace Manhole Cover and Frame	EA	4	1.00	0	4	\$1,400	\$5,600
A-24	55.08	Adjust Storm Drain Manhole Ring to Finish Grade	EA	1	1.00	0	1	\$1,000	\$1,000
A-25	60.03	Remove and Replace Valve Box Top Section	EA	9	1.00	0	9	\$700	\$6,300
A-26	60.04	Furnish and Install Fire Hydrant Assembly (Single Pumper)	EA	3	1.00	0	3	\$12,000	\$36,000
A-27	60.05	Adjust Key Box	EA	5	1.00	0	5	\$600	\$3,000
A-28	60.08	Decommission Fire Hydrant Assembly (Single Pumper)	EA	3	1.00	0	3	\$3,500	\$10,500
A-29	65.02	Construction Survey Measurement	LS	1	1.00	0	1	\$50,000	\$50,000
A-30	65.02	Two-Person Survey Crew	Hour	40	1.00	0	40	\$250	\$10,000
A-31	70.08	Remove and Reset Fence	LF	119	1.05	0	125	\$55	\$6,875
A-32	70.08	Remove Fence	LF	10	1.00	0	10	\$14	\$140
A-33	70.08	Remove and Reset Gate	LF	86	1.00	0	86	\$20	\$1,720
A-34	70.10	Inlaid Traffic Markings (Methyl Methacrylate, 24" White, 125 Mil)	LF	78	1.00	0	78	\$100	\$7,800
A-35	70.11	Standard Sign	SF	66	1.00	0	66	\$110	\$7,260
A-36	70.12	Traffic Maintenance	LS	1	1.00	0	1	\$190,000	\$190,000
A-37	70.16	Temporary Group Mailboxes	LS	1	1.00	0	1	\$7,000	\$7,000
A-38	70.17	Relocate Mailbox	EA	1	1.00	0	1	\$800	\$800
A-39	70.22	Removal/Disposal and/or Salvage/Installation of Obstructions	LS	1	1.00	0	1	\$20,000	\$20,000
A-40	70.23	Temporary Fencing	LF	205	1.05	0	215	\$20	\$4,300
A-41	75.11	Salvage and Relocate or Dispose Existing Boulder	EA	20	1.00	0	20	\$150	\$3,000
A-42	75.12	Temporary Tree Protection Fence	LF	300	1.00	0	300	\$18	\$5,400
A-43	75.13	Landscaping	LS	1	1.00	0	1	\$25,000	\$25,000
							•	TOTAL	\$2,363,635

ITEM	MASS	ITEM DESCRIPTION	UNIT	CALC.	CONT.	ROUND	EST QUANT	UNIT PRICE	TOTAL COST
No.	No.	inage Improvements		QUANT	FACTOR	FACTOR			
B-1	20.13	Trench Dewatering	LS	1	1.00	0	1	\$75.000	\$75.000
B-2	20.13	Trench Excavation and Backfill (Various Depths)	LF	3.182	1.00	0	3,182	\$35	\$111,370
B-3	20.15	Furnish Trench Backfill (Type II)	Ton	580	1.20	0	696	\$20	\$13,920
B-4	20.19	Foundation Backfill (Type C Filter Material)	Ton	200	1.10	0	220	\$35	\$7,700
B-5	20.26	Insulation Board (R-20)	SF	1,000	1.10	0	1,100	\$7	\$7,700
B-6	20.27	Disposal of Unusable or Surplus Material	CY	296	1.20	0	355	\$25	\$8,875
B-7	55.03	Furnish, Install, and Televise Subdrain with Geotextile (10-Inch, Type SP,	LF	110	1.00	0	110	\$75	\$8,250
B-8	55.03	Furnish, Install, and Televise Subdrain with Geotextile (12-Inch, Type SP,	LF	1,336	1.00	0	1,336	\$85	\$113,560
B-9	55.03	Furnish, Install, and Televise Subdrain with Geotextile (18-Inch, Type SP,	LF	1,340	1.00	0	1,340	\$95	\$127,300
B-10	55.03	Furnish, Install, and Televise Subdrain with Geotextile (24-Inch, Type SP,	LF	122	1.00	0	122	\$125	\$15,250
B-11	55.03	Furnish, Install, and Televise Subdrain with Geotextile (30-Inch, Type SP,	LF	230	1.00	0	230	\$135	\$31,050
B-12	55.03	Furnish, Install, and Televise Subdrain with Geotextile (36-Inch, Type SP,	LF	44	1.00	0	44	\$200	\$8,800
B-13	55.04	Connect to Existing Storm Drain System	EA	6	1.00	0	6	\$3,000	\$18,000
B-14	55.05	Construct (Type I) Manhole	EA	10	1.00	0	10	\$7,000	\$70,000
B-15	55.05	Construct (Type I) Catch Basin Manhole	EA	1	1.00	0	1	\$8,000	\$8,000
B-16	55.05	Construct (Type II) Manhole	EA	3	1.00	0	3	\$11,000	\$33,000
B-17	55.05	Construct (Type II) Catch Basin Manhole	EA	8	1.00	0	8	\$11,500	\$92,000
B-18	55.05	Construct (Type II) Bypass Manhole	EA	1	1.00	0	1	\$30,000	\$30,000
B-19	55.09	Construct Catch Basin	EA	11	1.00	0	11	\$6,000	\$66,000
B-20	55.11	Remove Manhole	EA	7	1.00	0	7	\$1,200	\$8,400
B-21	55.11	Remove Catch Basin	EA	10	1.00	0	10	\$1,000	\$10,000
B-22	55.18	Construct Footing Drain Service with Geotextile (6-inch, Type SP, Class 2	EA	11	1.00	0	11	\$2,500	\$27,500
B-23	55.22	Oil and Grit Separator (Stormceptor STC XXX)	EA	1	1.00	0	1	\$30,000	\$30,000
B-24	55.27	Storm Drain Bypass System	LS	1	1.00	0	1	\$60,000	\$60,000
B-25	70.07	Remove Pipe	LF	1,417	1.00	0	1,417	\$15	\$21,255
								TOTAL	\$1,002,930

ENGINEER'S ESTIMATE - FINAL DSR - ALTERNATIVE 2

ITEM No.	MASS No.	ITEM DESCRIPTION	UNIT	CALC. QUANT	CONT. FACTOR	ROUND FACTOR	EST QUANT	UNIT PRICE	TOTAL COST		
	le C - Illu	1									
C-1 80.01 Temporary Illumination LS 1 1.00 0 1 \$10,000											
C-2	80.02	Trench and Backfill (2'W x 3.5'D)	LF	1,520	1.10	-1	1,670	\$17	\$28,390		
C-3	80.04	Driven Pile Luminaire Pole Foundations	EA	11	1.00	0	11	\$2,500	\$27,500		
C-4	80.05	Fixed Base Luminaire Pole (26-29 Ft. Length)	EA	11	1.00	0	11	\$4,800	\$52,800		
C-5	80.05	Spare Fixed Base Luminaire Pole (28 Ft. Length)	EA	1	1.00	0	1	\$3,750	\$3,750		
C-6	80.05	Luminaire Arm (6-17 Ft. Length)	EA	14	1.00	0	14	\$850	\$11,900		
C-7	80.07	GRC Steel Conduit (2 inch)	LF	1,647	1.05	-1	1,730	\$23	\$39,790		
C-8	80.08	Junction Box (Type IA)	EA	13	1.00	0	13	\$1,250	\$16,250		
C-9	80.10	3 Conductor 8 AWG Type XHHW-2 Cable	LF	1,604	1.05	-1	1,680	\$8	\$13,440		
C-10	80.23	Luminaire (5000 Lm, Medium, Type 2)	EA	8	1.00	0	8	\$561	\$4,488		
C-11	80.23	Luminaire (6000 Lm, Medium, Type 2)	EA	2	1.00	0	2	\$611	\$1,222		
C-12	80.23	Luminaire (7000 Lm, Medium, Type 2)	EA	4	1.00	0	4	\$661	\$2,644		
C-13	80.23	Spare Luminaire (5000 Lm, Medium, Type 2)	EA	1	1.00	0	1	\$411	\$411		
C-14	80.23	Spare Luminaire (6000 Lm, Medium, Type 2)	EA	1	1.00	0	1	\$461	\$461		
C-15	80.23	Spare Luminaire (7000 Lm, Medium, Type 2)	EA	1	1.00	0	1	\$511	\$511		
C-16	80.28	Remove Luminaire	EA	2	1.00	0	2	\$1,200	\$2,400		
								TOTAL	\$215,957		

 Schedule A - Roadway Improvements
 \$2,363,635

 Schedule B - Drainage Improvements
 \$1,002,930

 Schedule C - Illumination Improvements
 \$215,957

Total Estimated Construction Cost: \$3,582,522

Quinhagak Street MOA Project No. 21-13

Utility Relocation Cost Estin	•
Alternative 2	
Electric (CEA)	\$34,000
Telephone (ACS)	\$18,000
Cable Television (GCI)	\$442,000
Natural Gas (ENSTAR)	\$349,000
Subtotal:	\$843,000
Construction Contingency (15%)	\$126,000
Total Utility Relocation Cost:	\$969,000

Quinhagak Street MOA Project No. 21-13 ACS Utility Conflict Summary Alternative 2

ld No.	APPROX. STATION	OFFSET	UTILITY CONFLICT	DESCRIPTION OF CONFLICT	RECOMMENDED ACTION	AMOUNT	UNIT	UNIT PRICE	соѕт
ACS-1	12+08	Crossing	UG Telephone	Roadway Structural Section, Storm Drain Pipe, Storm Drain Structure	Relocate	56	LF	\$110	\$6,160
ACS-2	24+46	Crossing	UG Telephone	Roadway Structural Section, Storm Drain Structures	Lower as Needed	50	LF	\$151	\$7,550
							Cons	truction Costs:	\$13,710

Construction Costs: \$13,710

Engineering/Administration (30%): \$4,113

Total: \$18,000

Quinhagak Street MOA Project No. 21-13 CEA Utility Conflict Summary Alternative 2

ld No.	APPROX. STATION	OFFSET	UTILITY CONFLICT	DESCRIPTION OF CONFLICT	RECOMMENDED ACTION	AMOUNT	UNIT	UNIT PRICE	СОЅТ
CEA-1	22+01	RT	Pad Mount Transformer	Storm Drain Pipe	Relocate as Needed	1	EA	\$19,365	\$19,365
CEA-2	24+45	Crossing	3ø 4 Wire Primary Conductor	Roadway Structural Section, Storm Drain Structures	Relocate as Needed	52	LF	\$124	\$6,448
							(Construction Costs:	\$25,813

Engineering/Administration (30%): \$7,744

Total: \$34,000

Quinhagak Street MOA Project No. 21-13 ENSTAR Utility Conflict Summary Alternative 2

ld No.	APPROX. STATION	OFFSET	UTILITY CONFLICT	DESCRIPTION OF CONFLICT	RECOMMENDED ACTION	AMOUNT	UNIT	UNIT PRICE	COST
ENSTAR-1	10+23	Crossing	2" Plastic Main	Roadway Structural Section, Subdrain Pipe, Storm Drain Structures	Lower as Needed	70	LF	\$172	\$12,019
ENSTAR-2	10+21 - 11+45	LT	2" Plastic Main	Roadway Structural Section, Subdrain Pipe, Storm Drain Structures	Relocate	125	LF	\$172	\$21,463
ENSTAR-3	10+54	LT	5/8" Plastic Service	Subdrain Pipe	Relocate	1	EA	\$3,090	\$3,090
ENSTAR-4	12+06	Crossing	12" Pressurized Transmission Main	Roadway Structural Section, Subdrain Pipe, Storm Drain Structure	Relocate	57	LF	\$591	\$33,664
ENSTAR-5	14+87 - 24+38	RT	2" Plastic Main	Subdrain Pipes, Storm Drain Structures	Relocate	952	LF	\$172	\$163,458
ENSTAR-6	14+92	Crossing	5/8" Plastic Service	Roadway Structural Section, Subdrain Pipe, Storm Drain Structure	Relocate	1	EA	\$3,090	\$3,090
ENSTAR-7	15+17	RT	2" Plastic Main	Storm Drain Structure	Relocate as Needed	17	LF	\$172	\$2,919
ENSTAR-8	16+37	RT	7/8" Plastic Service	Subdrain Pipe	Relocate	1	EA	\$3,846	\$3 <i>,</i> 846
ENSTAR-9	17+15	Crossing	5/8" Plastic Service	Roadway Structural Section, Subdrain Pipe	Lower as Needed	1	EA	\$3,090	\$3,090
ENSTAR-10	18+59	Crossing	5/8" Plastic Service	Roadway Structural Section, Subdrain Pipe, Storm Drain Structures	Relocate	1	EA	\$3,090	\$3,090
ENSTAR-11	19+49	Crossing	5/8" Plastic Service	Roadway Structural Section, Subdrain Pipe	Lower as Needed	1	EA	\$3,090	\$3,090
ENSTAR-12	20+00	RT	7/8" Plastic Service	Subdrain Pipe	Relocate as Needed	1	EA	\$3,846	\$3 <i>,</i> 846
ENSTAR-13	21+61	RT	7/8" Plastic Service	Roadway Structural Section, Subdrain Pipe	Relocate as Needed	1	EA	\$3,846	\$3,846
ENSTAR-14	24+36	Crossing	7/8" Plastic Service	Roadway Structural Section, Subdrain Pipe, Storm Drain Structures	Relocate as Needed	1	EA	\$3,846	\$3,846
ENSTAR-15	24+38	RT	7/8" Plastic Service	Storm Drain Structures	Relocate as Needed	1	EA	\$3,846	\$3,846
							Cons	truction Costs:	\$268,202

Engineering/Administration (30%) \$80,461

Total: \$349,000

Quinhagak Street MOA Project No. 21-13 GCI Utility Conflict Summary Alternative 2

ld No.	APPROX. STATION	OFFSET	UTILITY CONFLICT	DESCRIPTION OF CONFLICT	RECOMMENDED ACTION	AMOUNT	UNIT	UNIT PRICE	COST
GCI-1	10+25 - 11+54	RT	.750 Coaxial Cable	Roadway Structural Section, Subdrain Pipe, Storm Drain Structures	Relocate	143	LF	\$110	\$15,730
GCI-2	10+27 - 11+55	RT	.500 Coaxial Cable	Roadway Structural Section, Subdrain Pipe, Storm Drain Structures	Relocate as Needed	142	LF	\$96	\$13,632
GCI-3	10+32	RT	CATV Pedestal	Roadway Structural Section, Subdrain Pipe, Storm Drain Structure	Relocate as Needed	1	EA	\$1,476	\$1,476
GCI-4	11+51	Crossing	.625 Coaxial Cable	Roadway Structural Section	Lower as Needed	49	LF	\$103	\$5 <i>,</i> 047
GCI-5	11+57	Crossing	.500 and .750 Coaxial Cables	Roadway Structural Section	Lower as Needed	98	LF	\$103	\$10,094
GCI-6	11+62 - 12+00	LT	.500 and .750 Coaxial Cables	Roadway Structural Section	Lower as Needed	75	LF	\$103	\$7,725
GCI-7	11+54 - 14+80	RT	.625 Coaxial Cable	Roadway Structural Section, Subdrain Pipe, Storm Drain Structures	Relocate	329	LF	\$103	\$33,887
GCI-8	12+21 - 16+01	LT	.750 Coaxial Cable	Storm Drain Pipe, Storm Drain Structures	Relocate	381	LF	\$110	\$41,910
GCI-9	12+21 - 17+24	LT	.500 Coaxial Cable	Roadway Structural Section, Subdrain Pipes, Storm Drain Structures	Relocate	506	LF	\$96	\$48,576
GCI-10	13+99 - 14+33	LT	.625 Coaxial Cable	Subdrain Pipe, Storm Drain Structures	Lower as Needed	34	LF	\$103	\$3,502
GCI-11	14+26	LT	CATV Pedestal	Storm Drain Structures	Relocate as Needed	1	EA	\$1,476	\$1,476
GCI-12	14+26 - 17+24	LT	(2) .625 Coaxial Cables	Subdrain Pipes, Storm Drain Structures	Relocate	600	LF	\$103	\$61,800
GCI-13	14+80	RT	CATV Pedestal	Subdrain Pipe	Relocate as Needed	1	EA	\$1,476	\$1,476
GCI-14	17+24	LT	CATV Pedestal	Subdrain Pipe	Relocate as Needed	1	EA		\$0
GCI-15	17+24 - 24+46	LT	.750 Coaxial Cable	Roadway Structural Section, Subdrain Pipes, Storm Drain Structures	Relocate	725	LF	\$110	\$79,750
GCI-16	24+03	LT	Communications Vault	Subdrain Pipe	Relocate as Needed	1	EA	\$5,906	\$5,906
GCI-17	24+47	Crossing	UG Fiber Optic Cables	Roadway Structural Section	Lower as Needed	48	LF	\$165	\$7,920

Construction Costs: \$339,907

Engineering/Administration (30%) \$101,972

Total:

\$442,000

Date: 11/1/2023	Basis:		Prepared By:	CRW	Ver. 5.1
Project: Quinhagak St				Alternative 2	
Project Number:	21-13		[B]=local bond; [S]]=state grant; [F]= federal gra	int
DESIGN	Design Management	\$52,527		WEBPAG	E DATA
Start 20?	? PM&E Design Services	\$0		Environ	\$0
	PM&E Design Survey	\$0		DS	\$235,132
	PM&E Design Soil	\$0		Prelim Dsgn	\$470,263
	Contractual Dsgn Sers (Basic)	\$570,000		Final Dsgn	\$235,132
	Contractual Dsgn Sers (Add'l)	\$215,000		ROW	\$75,000
	Contractual Design Survey	\$70,000		Utilities	\$969,000
	Contractual Design Soils	\$33,000		Const	\$5,631,445
	Miscellaneous	\$0	_	Total	\$7,615,972
Subtotal	-		\$940,527	7	
UTILITIES	AWWU	\$0			
	? MOA Shoring	\$0 \$0			
5141120:	CEA	\$39,000			
	ACS	\$21,000			
	GCI	\$508,000			
	Enstar	\$401,000			
Subtotal	Liistai	\$101,000	- \$969,000)	
Subioni			\$707,000	,	
ROW	Real Estate Services	\$43,000			
Start 20?	? Land Acquisition	\$32,000			
Subtotal	•		\$75,000)	
CONSTRUCTION	Construction Management	\$82,409			
	? Inspection	\$218,563			
Start 20?	Materials Testing	\$35,830			
	Survey	\$32,247			
	Miscellaneous	\$32,247			
	Construction Contract	\$3,583,000			
Subtotal	Construction Contract	\$5,565,000	\$3,952,049)	
	_				
MISCELLANEOUS	Bond Overhead (15.0%)	\$1,142,396			
	Grant Overhead (0.0%)	\$0			
	Contingency (15%)	\$537,000	_		
Subtotal	-		\$1,679,396	5	
PROJECT TOTAL			\$7,615,972	2	

ENGINEER'S ESTIMATE - FINAL DSR - ALTERNATIVE 3

ITEM	MASS	Special	ITEM DESCRIPTION	UNIT	CALC.	CONT.	ROUND	EST QUANT	UNIT PRICE	TOTAL COST
No.	No.	No.		0	QUANT	FACTOR	FACTOR	201 00/111	011111102	1011/2 0001
		adway Im	nprovements							
A-1	20.02		Storm Water Pollution Prevention Plan (Type 3)	LS	1	1.00	0	1	\$31,000	\$31,000
A-2	20.03		Test Pit for Utility Locate	Hour	24	1.00	0	24	\$800	\$19,200
A-3	20.04		Clearing and Grubbing	LS	1	1.00	0	1	\$31,000	\$31,000
A-4	20.07		Remove Sidewalk or Concrete Apron	SY	85	1.00	0	85	\$35	\$2,975
A-5	20.08		Remove Curb and Gutter	LF	3,161	1.00	0	3,161	\$12	\$37,932
A-6	20.09		Remove Pavement	SY	7,462	1.00	0	7,462	\$4	\$29,848
A-7	20.10		Unusable Excavation	CY	19,082	1.20	-2	22,900	\$19	\$435,100
A-8	20.12		Dewatering	LS	1	1.00	0	1	\$12,000	\$12,000
A-9	20.21		Classified Fill and Backfill (Type II)	Ton	12,229	1.20	-2	14,700	\$18	\$264,600
A-10	20.21		Classified Fill and Backfill (Type II-A)	Ton	9,008	1.20	-2	10,800	\$19	\$205,200
A-11	20.22		Leveling Course	Ton	750	1.06	-1	800	\$60	\$48,000
A-12	20.25		Geotextile (Type A)	SY	9,618	1.00	-1	9,620	\$2	\$19,240
A-13	20.26		Insulation Board (R-9)	SF	69,234	1.01	-1	69,930	\$4	\$279,720
A-14	20.26		Insulation Board (R-4.5)	SF	6,034	1.01	-1	6,090	\$3	\$18,270
A-15	30.02		P.C.C. Curb and Gutter (All Types)	LF	3,216	1.00	0	3,216	\$40	\$128,640
A-16	30.03		P.C.C. Sidewalk (4" Thick, Standard Finish)	SY	654	1.00	0	654	\$100	\$65,400
A-17	30.03		P.C.C. Sidewalk (6" Thick, Standard Finish)	SY	127	1.00	0	127	\$120	\$15,240
A-18	30.04		P.C.C. Curb Ramp (6" Thick)	EA	7	1.00	0	7	\$4,500	\$31,500
A-19	30.04		Detectable Warnings	SF	77	1.00	0	77	\$150	\$11,550
A-20	30.10		Colored Concrete (Red, 4" Thick, Imprinted)	SY	240	1.00	0	240	\$250	\$60,000
A-21	30.10		Colored Concrete (Red, 6" Thick, Imprinted)	SY	43	1.00	0	43	\$300	\$12,900
A-22	40.06		A.C. Pavement (Class D)	Ton	665	1.06	-1	700	\$175	\$122,500
A-23	40.06		A.C. Pavement (Class E)	Ton	780	1.06	-1	830	\$175	\$145,250
A-24	50.06		Remove and Replace Manhole Cone Section	EA	3	1.00	0	3	\$2,650	\$7,950
A-25	50.06		Remove and Replace Manhole Cover and Frame	EA	4	1.00	0	4	\$1,400	\$5,600
A-26	55.08		Adjust Storm Drain Manhole Ring to Finish Grade	EA	1	1.00	0	1	\$1,000	\$1,000
A-27	60.03		Remove and Replace Valve Box Top Section	EA	11	1.00	0	11	\$700	\$7,700
A-28	60.04		Furnish and Install Fire Hydrant Assembly (Single Pumper)	EA	1	1.00	0	1	\$12,000	\$12,000
A-29	60.05		Adjust Key Box	EA	5	1.00	0	5	\$600	\$3,000
A-30	60.08		Decommission Fire Hydrant Assembly (Single Pumper)	EA	1	1.00	0	1	\$3,500	\$3,500
A-31	65.02		Construction Survey Measurement	LS	1	1.00	0	1	\$50,000	\$50,000
A-32	65.02		Two-Person Survey Crew	Hour	40	1.00	0	40	\$250	\$10,000
A-33	70.08		Remove and Reset Fence	LF	119	1.05	0	125	\$55	\$6,875
A-34	70.08		Remove Fence	LF	10	1.00	0	10	\$14	\$140
A-35	70.08		Remove and Reset Gate	LF	86	1.00	0	86	\$20	\$1,720
A-36	70.10		Inlaid Traffic Markings (Methyl Methacrylate, 24" White, 125 Mil)	LF	78	1.00	0	78	\$100	\$7,800
A-37	70.11		Standard Sign	SF	66	1.00	0	66	\$110	\$7,260
A-38	70.12		Traffic Maintenance	LS	1	1.00	0	1	\$200,000	\$200,000
A-39	70.16	1	Temporary Group Mailboxes	LS	1	1.00	0	1	\$7,000	\$7,000
A-40	70.17		Relocate Mailbox	EA	1	1.00	0	1	\$800	\$800
A-41	70.22		Removal/Disposal and/or Salvage/Installation of Obstructions	LS	1	1.00	0	1	\$20,000	\$20,000
A-42	70.23		Temporary Fencing	LF	205	1.05	0	215	\$20	\$4,300
A-43	75.11		Salvage and Relocate or Dispose Existing Boulder	EA	20	1.00	0	20	\$150	\$3,000
A-44	75.12		Temporary Tree Protection Fence	LF	300	1.00	0	300	\$18	\$5,400
A-45	75.12		Landscaping	LS	1	1.00	0	1	\$25,000	\$25,000
1.15							, v		TOTAL	\$2,417,110

ITEM	MASS No.	Special No.	ITEM DESCRIPTION	UNIT	CALC. QUANT	CONT.	ROUND FACTOR	EST QUANT	UNIT PRICE	TOTAL COST
No.			provements		QUANT	FACTOR	FACTOR			
B-1	20.13	0.00	Trench Dewatering	LS	1	1.00	0	1	\$75.000	\$75,000
B-2	20.13	0.00	Trench Excavation and Backfill (Various Depths)	LF	1.820	1.00	0	1.820	\$35	\$63,700
B-3	20.15	0.00	Furnish Trench Backfill (Type II)	Ton	280	1.20	0	336	\$20	\$6,720
B-4	20.19	0.00	Foundation Backfill (Type C Filter Material)	Ton	170	1.10	0	187	\$35	\$6,545
B-5	20.26	0.00	Insulation Board (R-20)	SF	1,000	1.10	0	1,100	\$7	\$7,700
B-6	20.27	0.00	Disposal of Unusable or Surplus Material	CY	142	1.20	0	170	\$25	\$4,250
B-7	55.03	0.00	Furnish, Install, and Televise Subdrain with Geotextile (10-Inch, Type SP,	LF	90	1.00	0	90	\$75	\$6,750
B-8	55.03	0.00	Furnish, Install, and Televise Subdrain with Geotextile (12-Inch, Type SP,	LF	393	1.00	0	393	\$85	\$33,405
B-9	55.03	0.00	Furnish, Install, and Televise Subdrain with Geotextile (18-Inch, Type SP,	LF	984	1.00	0	984	\$95	\$93,480
B-10	55.03	0.00	Furnish, Install, and Televise Subdrain with Geotextile (24-Inch, Type SP,	LF	113	1.00	0	113	\$125	\$14,125
B-11	55.03	0.00	Furnish, Install, and Televise Subdrain with Geotextile (30-Inch, Type SP,	LF	240	1.00	0	240	\$135	\$32,400
B-12	55.04	0.00	Connect to Existing Storm Drain System	EA	7	1.00	0	7	\$3,000	\$21,000
B-13	55.05	0.00	Construct (Type I) Manhole	EA	9	1.00	0	9	\$7,000	\$63,000
B-14	55.05	0.00	Construct (Type I) Catch Basin Manhole	EA	0	1.00	0	0	\$8,000	\$0
B-15	55.05	0.00	Construct (Type II) Manhole	EA	4	1.00	0	4	\$11,000	\$44,000
B-16	55.05	0.00	Construct (Type II) Catch Basin Manhole	EA	0	1.00	0	0	\$11,500	\$0
B-17	55.05	0.00	Construct (Type II) Bypass Manhole	EA	2	1.00	0	2	\$30,000	\$60,000
B-18	55.09	0.00	Construct Catch Basin	EA	16	1.00	0	16	\$6,000	\$96,000
B-19	55.11	0.00	Remove Manhole	EA	5	1.00	0	5	\$1,200	\$6,000
B-20	55.11	0.00	Remove Catch Basin	EA	10	1.00	0	10	\$1,000	\$10,000
B-21	55.18	95.04	Construct Footing Drain Service with Geotextile (6-inch, Type SP, Class 2	EA	11	1.00	0	11	\$2,500	\$27,500
B-22	55.22	0.00	Oil and Grit Separator (Stormceptor STC XXX)	EA	1	1.00	0	1	\$30,000	\$30,000
B-23	55.27	0.00	Storm Drain Bypass System	LS	1	1.00	0	1	\$60,000	\$60,000
B-24	70.07	0.00	Remove Pipe	LF	1,325	1.00	0	1,325	\$15	\$19,875
									TOTAL	\$781,450

ENGINEER'S ESTIMATE - FINAL DSR - ALTERNATIVE 3

ITEM No.	MASS No.	Special No.	ITEM DESCRIPTION	UNIT	CALC. QUANT	CONT. FACTOR	ROUND	EST QUANT	UNIT PRICE	TOTAL COST
Schedul	1									
C-1	80.01	0.00	Temporary Illumination	LS	1	1.00	0	1	\$10,000	\$10,000
C-2	80.02	0.00	Trench and Backfill (2'W x 3.5'D)	LF	1,520	1.10	-1	1,670	\$17	\$28,390
C-3	80.04	0.00	Driven Pile Luminaire Pole Foundations	EA	11	1.00	0	11	\$2,500	\$27,500
C-4	80.05	95.04	Fixed Base Luminaire Pole (26-29 Ft. Length)	EA	11	1.00	0	11	\$4,800	\$52,800
C-5	80.05	95.04	Spare Fixed Base Luminaire Pole (28 Ft. Length)	EA	1	1.00	0	1	\$3,750	\$3,750
C-6	80.05	95.04	Luminaire Arm (6-17 Ft. Length)	EA	14	1.00	0	14	\$850	\$11,900
C-7	80.07	0.00	GRC Steel Conduit (2 inch)	LF	1,647	1.05	-1	1,730	\$23	\$39,790
C-8	80.08	95.04	Junction Box (Type IA)	EA	13	1.00	0	13	\$1,250	\$16,250
C-9	80.10	0.00	3 Conductor 8 AWG Type XHHW-2 Cable	LF	1,604	1.05	-1	1,680	\$8	\$13,440
C-10	80.23	95.04	Luminaire (5000 Lm, Medium, Type 2)	EA	8	1.00	0	8	\$561	\$4,488
C-11	80.23	95.04	Luminaire (6000 Lm, Medium, Type 2)	EA	2	1.00	0	2	\$611	\$1,222
C-12	80.23	95.04	Luminaire (7000 Lm, Medium, Type 2)	EA	4	1.00	0	4	\$661	\$2,644
C-13	80.23	95.04	Spare Luminaire (5000 Lm, Medium, Type 2)	EA	1	1.00	0	1	\$411	\$411
C-14	80.23	95.04	Spare Luminaire (6000 Lm, Medium, Type 2)	EA	1	1.00	0	1	\$461	\$461
C-15	80.23	95.04	Spare Luminaire (7000 Lm, Medium, Type 2)	EA	1	1.00	0	1	\$511	\$511
C-16	80.28	95.04	Remove Luminaire	EA	2	1.00	0	2	\$1,200	\$2,400
									TOTAL	\$215,957

Schedule A - Roadway Improvements	\$2,417,110
Schedule B - Drainage Improvements	\$781,450
Schedule C - Illumination Improvements	\$215 957

Total Estimated Construction Cost: \$3,414,517

Quinhagak Street MOA Project No. 21-13

Utility Relocation Cost Estimate Summary Alternative 3							
Electric (CEA)	\$9,000						
Telephone (ACS)	\$18,000						
Cable Television (GCI)	\$356,000						
Natural Gas (ENSTAR)	\$276,000						
Subtotal:	\$659,000						
Construction Contingency (15%)	\$99,000						
Total Utility Relocation Cost:	\$758,000						

Quinhagak Street MOA Project No. 21-13 ACS Utility Conflict Summary Alternative 3

ld No.	APPROX. STATION	OFFSET	UTILITY CONFLICT	DESCRIPTION OF CONFLICT	RECOMMENDED ACTION	AMOUNT	UNIT	UNIT PRICE	соѕт
ACS-1	12+08	Crossing	UG Telephone	Roadway Structural Section, Subdrain Pipe, Storm Drain Structures	Adjust as Needed	54	LF	\$110	\$5,940
ACS-2	24+46	Crossing	UG Telephone	Roadway Structural Section, Storm Drain Structures	Relocate or Adjust as Needed	50	LF	\$151	\$7,550
							Cons	truction Costs:	\$13,490

Engineering/Administration (30%): \$4,047

Total:

\$18,000

Quinhagak Street MOA Project No. 21-13 CEA Utility Conflict Summary Alternative 3

ld No.	APPROX. STATION	OFFSET	UTILITY CONFLICT	DESCRIPTION OF CONFLICT	RECOMMENDED ACTION	AMOUNT	UNIT	UNIT PRICE	СОЅТ
CEA-1	24+45	Crossing	UG 3ø 4 Wire Primary Conductor	Roadway Structural Section, Storm Drain Structures	Relocate as Needed	52	LF	\$124	\$6,448
							(Construction Costs:	\$6,448
						Engine	ering/Adı	ministration (30%):	\$1,934
								Total:	\$9,000

Quinhagak Street MOA Project No. 21-13 ENSTAR Utility Conflict Summary Alternative 3

ld No.	APPROX. STATION	OFFSET	UTILITY CONFLICT	DESCRIPTION OF CONFLICT	RECOMMENDED ACTION	AMOUNT	UNIT	UNIT PRICE	СОЅТ
ENSTAR-1	10+23	Crossing	2" Plastic Main	Roadway Structural Section, Subdrain Pipe, Storm Drain Structures	Relocate	80	LF	\$172	\$13,736
ENSTAR-2	10+21 - 11+52	LT	2" Plastic Main	Roadway Structural Section, Footing Drain Service	Adjust as Needed	133	LF	\$172	\$22,836
ENSTAR-3	12+06	Crossing	12" Pressurized Transmission Main	Roadway Structural Section, Subdrain Pipe, Storm Drain Structures	Relocate as Needed	75	LF	\$591	\$44,295
ENSTAR-4	14+87 - 15+74	RT	2" Plastic Main	Roadway Structural Section, Subdrain Pipes, Storm Drain Structures	Relocate	87	LF	\$172	\$14,938
ENSTAR-5	14+92	Crossing	5/8" Plastic Service	Roadway Structural Section, Subdrain Pipe, Storm Drain Structure	Relocate as Needed	1	EA	\$3,090	\$3,090
ENSTAR-6	15+17	RT	2" Plastic Main	Storm Drain Structure	Relocate as Needed	35	LF	\$172	\$6,010
ENSTAR-7	17+15	Crossing	5/8" Plastic Service	Roadway Structural Section, Subdrain Pipe	Lower as Needed	1	EA	\$3,090	\$3,090
ENSTAR-8	18+59	Crossing	5/8" Plastic Service	Roadway Structural Section, Subdrain Pipe, Storm Drain Structures	Relocate as Needed	1	EA	\$3,090	\$3,090
ENSTAR-9	18+81 - 18+91	RT	2" Plastic Main	Footing Drain Service	Lower as Needed	10	LF	\$172	\$1,717
ENSTAR-10	19+49	Crossing	5/8" Plastic Service	Roadway Structural Section, Subdrain Pipe	Lower as Needed	1	EA	\$3,090	\$3,090
ENSTAR-11	19+49 - 24+86	RT	2" Plastic Main	Roadway Structural Section, Footing Drain Services, Storm Drain Structures	Relocate as Needed	538	LF	\$172	\$92,375
ENSTAR-12	24+36	Crossing	7/8" Plastic Service	Roadway Structural Section, Subdrain Pipe, Storm Drain Structures	Relocate as Needed	1	EA	\$3,846	\$3,846
	1 1		1				Cons	truction Costs:	\$212,113

Engineering/Administration (30%) \$63,634

Total: \$276,000

Quinhagak Street MOA Project No. 21-13 GCI Utility Conflict Summary Alternative 3

ld No.	APPROX. STATION	OFFSET	UTILITY CONFLICT	DESCRIPTION OF CONFLICT	RECOMMENDED ACTION	AMOUNT	UNIT	UNIT PRICE	COST
GCI-1	10+25 - 11+54	RT	.750 Coaxial Cable	Roadway Structural Section, Footing Drain Service, Storm Drain Structure	Relocate	143	LF	\$110	\$15,730
GCI-2	10+27 - 11+55	RT	.500 Coaxial Cable	Roadway Structural Section, Footing Drain Service, Storm Drain Structure	Relocate as Needed	139	LF	\$96	\$13,344
GCI-3	10+32	RT	CATV Pedestal	Roadway Structural Section, Storm Drain Structure	Relocate	1	EA	\$1,476	\$1,476
GCI-4	11+51	Crossing	.625 Coaxial Cable	Roadway Structural Section, Subdrain Pipe	Lower as Needed	49	LF	\$103	\$5,047
GCI-5	11+57	Crossing	.500 and .750 Coaxial Cables	Roadway Structural Section	Lower as Needed	98	LF	\$110	\$10,780
GCI-6	11+62 - 12+11	LT	.500 and .750 Coaxial Cables	Roadway Structural Section, Storm Drain Structure	Relocate as Needed	103	LF	\$110	\$11,330
GCI-7	11+54 - 14+79	RT	.625 Coaxial Cable	Roadway Structural Section	Lower as Needed	326	LF	\$103	\$33,578
GCI-8	12+18 - 12+28	LT	.500 and .750 Coaxial Cable	Footing Drain Service	Lower as Needed	20	LF	\$110	\$2,200
GCI-9	12+40 - 17+24	LT	.500 and .750 Coaxial Cable	Roadway Structual Section & Storm Drain Structures	Relocate as Needed	484	LF	\$110	\$53,240
GCI-10	14+26 - 17+24	LT	(2) .625 Coaxial Cables	Roadway Structual Section & Storm Drain Structures	Relocate as Needed	301	LF	\$103	\$31,003
GCI-11	17+24	LT	CATV Pedestal	Footing Drain Service	Relocate as Needed	1	EA	\$1,476	\$1,476
GCI-12	17+24 - 24+15	LT	.750 Coaxial Cable	Roadway Structural Section, Footing Drain Services, Storm Drain Structure	Relocate	693	LF	\$110	\$76 <i>,</i> 230
GCI-13	21+06 - 21+31	LT	.750 Coaxial Cable	Footing Drain Service, Storm Drain Structure	Relocate as Needed	25	LF	\$110	\$2,750
GCI-14	24+03	LT	Communications Vault	Subdrain Pipe	Relocate as Needed	1	EA	\$5,906	\$5,906
GCI-15	24+33 - 24+56	LT	.750 Coaxial Cable	Storm Drain Structure	Relocate as Needed	13	LF	\$110	\$1,430
GCI-16	24+47	Crossing	UG Fiber Optic Cables	Roadway Structural Section, Storm Drain Structures	Lower as Needed	48	LF	\$165	\$7,920

Construction Costs: \$273,440

Engineering/Administration (30%) \$82,032

Total: \$356,000

Date: 11/1/2023	Basis:		Prepared By:	CRW	Ver. 5.1		
Project: Quinhagak St	reet Reconstruction			Alternative 3			
Project Number:	21-13		[B]=local bond; [S]=state grant; [F]= federal gra	int		
DESIGN	Design Management	\$50,064		WEBPAG	E DATA		
Start 20?	? PM&E Design Services	\$0		Environ	\$0		
	PM&E Design Survey	\$0		DS	\$234,516		
	PM&E Design Soil	\$0		Prelim Dsgn	\$469,032		
	Contractual Dsgn Sers (Basic)	\$570,000		Final Dsgn	\$234,516		
	Contractual Dsgn Sers (Add'l)	\$215,000		ROW	\$21,000		
	Contractual Design Survey	\$70,000		Utilities	\$757,000		
	Contractual Design Soils	\$33,000		Const	\$5,336,652		
	Miscellaneous	\$0		Total	\$7,052,716		
Subtotal	•		\$938,064	4			
UTILITIES	AWWU	\$0					
	? MOA Shoring	\$0 \$0					
51411 20:	CEA	\$10,000					
	ACS	\$10,000					
	GCI	\$409,000					
	Enstar	\$317,000					
Subtotal		<i>\$211,000</i>	\$757,000)			
ROW	Real Estate Services	\$21,000					
Start 20?	? Land Acquisition	\$0	_				
Subtotal			\$21,000)			
CONSTRUCTION	Construction Management	\$78,545					
	? Inspection	\$208,315					
	Materials Testing	\$34,150					
	Survey	\$30,735					
	Miscellaneous	\$0					
	Construction Contract	\$3,415,000					
Subtotal	•		\$3,766,745	5			
MICCELLANFOUG	Bond Overhead (15.0%)	\$1 057 007					
MISCELLANEOUS		\$1,057,907 \$0					
	Grant Overhead (0.0%) Contingency (15%)	\$0 \$512,000					
Subtotal	contingency (1570)	¢312,000	\$1,569,907	7			
Suotoun			φ1,30 3 ,90	,			
PROJECT TOTAL			\$7,052,716	<u>5</u>			